Cargando…
Wheel Defect Detection Using a Hybrid Deep Learning Approach
Defective wheels pose a significant challenge in railway transportation, impacting operational performance and safety. Excessive traction and braking forces give rise to deviations from the intended conical tread shape, resulting in amplified vibrations and noise. Moreover, these deviations contribu...
Autores principales: | Shaikh, Khurram, Hussain, Imtiaz, Chowdhry, Bhawani Shankar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383427/ https://www.ncbi.nlm.nih.gov/pubmed/37514543 http://dx.doi.org/10.3390/s23146248 |
Ejemplares similares
-
Triaxial bearing vibration dataset of induction motor under varying load conditions
por: Kumar, Dileep, et al.
Publicado: (2022) -
An Unsupervised Learning Approach for Wayside Train Wheel Flat Detection
por: Mohammadi, Mohammadreza, et al.
Publicado: (2023) -
Hybrid Deep Learning Approach for Accurate Tumor Detection in Medical Imaging Data
por: Cifci, Mehmet Akif, et al.
Publicado: (2023) -
A Study on Wheel Member Condition Recognition Using Machine Learning (Support Vector Machine)
por: Lee, Jin-Han, et al.
Publicado: (2023) -
Hybridized Deep Learning Approach for Detecting Alzheimer’s Disease
por: Balaji, Prasanalakshmi, et al.
Publicado: (2023)