Cargando…
Unmasking Cybercrime with Artificial-Intelligence-Driven Cybersecurity Analytics
Cybercriminals are becoming increasingly intelligent and aggressive, making them more adept at covering their tracks, and the global epidemic of cybercrime necessitates significant efforts to enhance cybersecurity in a realistic way. The COVID-19 pandemic has accelerated the cybercrime threat landsc...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383531/ https://www.ncbi.nlm.nih.gov/pubmed/37514596 http://dx.doi.org/10.3390/s23146302 |
Sumario: | Cybercriminals are becoming increasingly intelligent and aggressive, making them more adept at covering their tracks, and the global epidemic of cybercrime necessitates significant efforts to enhance cybersecurity in a realistic way. The COVID-19 pandemic has accelerated the cybercrime threat landscape. Cybercrime has a significant impact on the gross domestic product (GDP) of every targeted country. It encompasses a broad spectrum of offenses committed online, including hacking; sensitive information theft; phishing; online fraud; modern malware distribution; cyberbullying; cyber espionage; and notably, cyberattacks orchestrated by botnets. This study provides a new collaborative deep learning approach based on unsupervised long short-term memory (LSTM) and supervised convolutional neural network (CNN) models for the early identification and detection of botnet attacks. The proposed work is evaluated using the CTU-13 and IoT-23 datasets. The experimental results demonstrate that the proposed method achieves superior performance, obtaining a very satisfactory success rate (over 98.7%) and a false positive rate of 0.04%. The study facilitates and improves the understanding of cyber threat intelligence, identifies emerging forms of botnet attacks, and enhances forensic investigation procedures. |
---|