Cargando…
Explaining Multiclass Compound Activity Predictions Using Counterfactuals and Shapley Values
Most machine learning (ML) models produce black box predictions that are difficult, if not impossible, to understand. In pharmaceutical research, black box predictions work against the acceptance of ML models for guiding experimental work. Hence, there is increasing interest in approaches for explai...
Autores principales: | Lamens, Alec, Bajorath, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383571/ https://www.ncbi.nlm.nih.gov/pubmed/37513472 http://dx.doi.org/10.3390/molecules28145601 |
Ejemplares similares
-
Explaining Accurate Predictions of Multitarget Compounds with Machine Learning Models Derived for Individual Targets
por: Lamens, Alec, et al.
Publicado: (2023) -
Protocol to explain graph neural network predictions using an edge-centric Shapley value-based approach
por: Mastropietro, Andrea, et al.
Publicado: (2022) -
Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2020) -
Calculation of exact Shapley values for explaining support vector machine models using the radial basis function kernel
por: Mastropietro, Andrea, et al.
Publicado: (2023) -
Differences in learning characteristics between support vector machine and random forest models for compound classification revealed by Shapley value analysis
por: Siemers, Friederike Maite, et al.
Publicado: (2023)