Cargando…
Integration of Multivariate Statistical Control Chart and Machine Learning to Identify the Abnormal Process Parameters for Polylactide with Glass Fiber Composites in Injection Molding; Part I: The Processing Parameter Optimization for Multiple Qualities of Polylactide/Glass Fiber Composites in Injection Molding
This paper discusses the mixing of polylactide (PLA) and glass fiber which use injection molding to produce a functional composite material with glass fiber properties. The injection molding process explores the influence of glass fiber ratio, melt temperature, injection speed, packing pressure, pac...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383581/ https://www.ncbi.nlm.nih.gov/pubmed/37514408 http://dx.doi.org/10.3390/polym15143018 |
_version_ | 1785080945704960000 |
---|---|
author | Hsiao, Chi-Hao Huang, Chang-Chiun Kuo, Chung-Feng Jeffrey Ahmad, Naveed |
author_facet | Hsiao, Chi-Hao Huang, Chang-Chiun Kuo, Chung-Feng Jeffrey Ahmad, Naveed |
author_sort | Hsiao, Chi-Hao |
collection | PubMed |
description | This paper discusses the mixing of polylactide (PLA) and glass fiber which use injection molding to produce a functional composite material with glass fiber properties. The injection molding process explores the influence of glass fiber ratio, melt temperature, injection speed, packing pressure, packing time and cooling time on the mechanical properties of composite. Using the orthogonal table planning experiment of the Taguchi method, the optimal parameter level combination of a single quality process is obtained through main effect analysis (MEA) and Analysis of variance (ANOVA). Then, the optimal parameter level combination of multiple qualities is obtained through principal component analysis (PCA) and data envelopment analysis (DEA), respectively. It is observed that if all the quality characteristics of tensile strength, hardness, impact strength and bending strength are considered at the same time, the optimal process conditions are glass fiber addition 20 wt %, melt temperature 185 °C, injection speed 80 mm/s, holding pressure 60 MPa, holding time 1 s and cooling time 15 s, and the corresponding mechanical properties are tensile strength 95.04 MPa, hardness 86.52 Shore D, impact strength 4.4408 J/cm(2), bending strength 119.89 MPa. This study effectively enhances multiple qualities of PLA/GF composite. |
format | Online Article Text |
id | pubmed-10383581 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103835812023-07-30 Integration of Multivariate Statistical Control Chart and Machine Learning to Identify the Abnormal Process Parameters for Polylactide with Glass Fiber Composites in Injection Molding; Part I: The Processing Parameter Optimization for Multiple Qualities of Polylactide/Glass Fiber Composites in Injection Molding Hsiao, Chi-Hao Huang, Chang-Chiun Kuo, Chung-Feng Jeffrey Ahmad, Naveed Polymers (Basel) Article This paper discusses the mixing of polylactide (PLA) and glass fiber which use injection molding to produce a functional composite material with glass fiber properties. The injection molding process explores the influence of glass fiber ratio, melt temperature, injection speed, packing pressure, packing time and cooling time on the mechanical properties of composite. Using the orthogonal table planning experiment of the Taguchi method, the optimal parameter level combination of a single quality process is obtained through main effect analysis (MEA) and Analysis of variance (ANOVA). Then, the optimal parameter level combination of multiple qualities is obtained through principal component analysis (PCA) and data envelopment analysis (DEA), respectively. It is observed that if all the quality characteristics of tensile strength, hardness, impact strength and bending strength are considered at the same time, the optimal process conditions are glass fiber addition 20 wt %, melt temperature 185 °C, injection speed 80 mm/s, holding pressure 60 MPa, holding time 1 s and cooling time 15 s, and the corresponding mechanical properties are tensile strength 95.04 MPa, hardness 86.52 Shore D, impact strength 4.4408 J/cm(2), bending strength 119.89 MPa. This study effectively enhances multiple qualities of PLA/GF composite. MDPI 2023-07-12 /pmc/articles/PMC10383581/ /pubmed/37514408 http://dx.doi.org/10.3390/polym15143018 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hsiao, Chi-Hao Huang, Chang-Chiun Kuo, Chung-Feng Jeffrey Ahmad, Naveed Integration of Multivariate Statistical Control Chart and Machine Learning to Identify the Abnormal Process Parameters for Polylactide with Glass Fiber Composites in Injection Molding; Part I: The Processing Parameter Optimization for Multiple Qualities of Polylactide/Glass Fiber Composites in Injection Molding |
title | Integration of Multivariate Statistical Control Chart and Machine Learning to Identify the Abnormal Process Parameters for Polylactide with Glass Fiber Composites in Injection Molding; Part I: The Processing Parameter Optimization for Multiple Qualities of Polylactide/Glass Fiber Composites in Injection Molding |
title_full | Integration of Multivariate Statistical Control Chart and Machine Learning to Identify the Abnormal Process Parameters for Polylactide with Glass Fiber Composites in Injection Molding; Part I: The Processing Parameter Optimization for Multiple Qualities of Polylactide/Glass Fiber Composites in Injection Molding |
title_fullStr | Integration of Multivariate Statistical Control Chart and Machine Learning to Identify the Abnormal Process Parameters for Polylactide with Glass Fiber Composites in Injection Molding; Part I: The Processing Parameter Optimization for Multiple Qualities of Polylactide/Glass Fiber Composites in Injection Molding |
title_full_unstemmed | Integration of Multivariate Statistical Control Chart and Machine Learning to Identify the Abnormal Process Parameters for Polylactide with Glass Fiber Composites in Injection Molding; Part I: The Processing Parameter Optimization for Multiple Qualities of Polylactide/Glass Fiber Composites in Injection Molding |
title_short | Integration of Multivariate Statistical Control Chart and Machine Learning to Identify the Abnormal Process Parameters for Polylactide with Glass Fiber Composites in Injection Molding; Part I: The Processing Parameter Optimization for Multiple Qualities of Polylactide/Glass Fiber Composites in Injection Molding |
title_sort | integration of multivariate statistical control chart and machine learning to identify the abnormal process parameters for polylactide with glass fiber composites in injection molding; part i: the processing parameter optimization for multiple qualities of polylactide/glass fiber composites in injection molding |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383581/ https://www.ncbi.nlm.nih.gov/pubmed/37514408 http://dx.doi.org/10.3390/polym15143018 |
work_keys_str_mv | AT hsiaochihao integrationofmultivariatestatisticalcontrolchartandmachinelearningtoidentifytheabnormalprocessparametersforpolylactidewithglassfibercompositesininjectionmoldingpartitheprocessingparameteroptimizationformultiplequalitiesofpolylactideglassfibercompositesini AT huangchangchiun integrationofmultivariatestatisticalcontrolchartandmachinelearningtoidentifytheabnormalprocessparametersforpolylactidewithglassfibercompositesininjectionmoldingpartitheprocessingparameteroptimizationformultiplequalitiesofpolylactideglassfibercompositesini AT kuochungfengjeffrey integrationofmultivariatestatisticalcontrolchartandmachinelearningtoidentifytheabnormalprocessparametersforpolylactidewithglassfibercompositesininjectionmoldingpartitheprocessingparameteroptimizationformultiplequalitiesofpolylactideglassfibercompositesini AT ahmadnaveed integrationofmultivariatestatisticalcontrolchartandmachinelearningtoidentifytheabnormalprocessparametersforpolylactidewithglassfibercompositesininjectionmoldingpartitheprocessingparameteroptimizationformultiplequalitiesofpolylactideglassfibercompositesini |