Cargando…

Integration of Multivariate Statistical Control Chart and Machine Learning to Identify the Abnormal Process Parameters for Polylactide with Glass Fiber Composites in Injection Molding; Part I: The Processing Parameter Optimization for Multiple Qualities of Polylactide/Glass Fiber Composites in Injection Molding

This paper discusses the mixing of polylactide (PLA) and glass fiber which use injection molding to produce a functional composite material with glass fiber properties. The injection molding process explores the influence of glass fiber ratio, melt temperature, injection speed, packing pressure, pac...

Descripción completa

Detalles Bibliográficos
Autores principales: Hsiao, Chi-Hao, Huang, Chang-Chiun, Kuo, Chung-Feng Jeffrey, Ahmad, Naveed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383581/
https://www.ncbi.nlm.nih.gov/pubmed/37514408
http://dx.doi.org/10.3390/polym15143018
_version_ 1785080945704960000
author Hsiao, Chi-Hao
Huang, Chang-Chiun
Kuo, Chung-Feng Jeffrey
Ahmad, Naveed
author_facet Hsiao, Chi-Hao
Huang, Chang-Chiun
Kuo, Chung-Feng Jeffrey
Ahmad, Naveed
author_sort Hsiao, Chi-Hao
collection PubMed
description This paper discusses the mixing of polylactide (PLA) and glass fiber which use injection molding to produce a functional composite material with glass fiber properties. The injection molding process explores the influence of glass fiber ratio, melt temperature, injection speed, packing pressure, packing time and cooling time on the mechanical properties of composite. Using the orthogonal table planning experiment of the Taguchi method, the optimal parameter level combination of a single quality process is obtained through main effect analysis (MEA) and Analysis of variance (ANOVA). Then, the optimal parameter level combination of multiple qualities is obtained through principal component analysis (PCA) and data envelopment analysis (DEA), respectively. It is observed that if all the quality characteristics of tensile strength, hardness, impact strength and bending strength are considered at the same time, the optimal process conditions are glass fiber addition 20 wt %, melt temperature 185 °C, injection speed 80 mm/s, holding pressure 60 MPa, holding time 1 s and cooling time 15 s, and the corresponding mechanical properties are tensile strength 95.04 MPa, hardness 86.52 Shore D, impact strength 4.4408 J/cm(2), bending strength 119.89 MPa. This study effectively enhances multiple qualities of PLA/GF composite.
format Online
Article
Text
id pubmed-10383581
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-103835812023-07-30 Integration of Multivariate Statistical Control Chart and Machine Learning to Identify the Abnormal Process Parameters for Polylactide with Glass Fiber Composites in Injection Molding; Part I: The Processing Parameter Optimization for Multiple Qualities of Polylactide/Glass Fiber Composites in Injection Molding Hsiao, Chi-Hao Huang, Chang-Chiun Kuo, Chung-Feng Jeffrey Ahmad, Naveed Polymers (Basel) Article This paper discusses the mixing of polylactide (PLA) and glass fiber which use injection molding to produce a functional composite material with glass fiber properties. The injection molding process explores the influence of glass fiber ratio, melt temperature, injection speed, packing pressure, packing time and cooling time on the mechanical properties of composite. Using the orthogonal table planning experiment of the Taguchi method, the optimal parameter level combination of a single quality process is obtained through main effect analysis (MEA) and Analysis of variance (ANOVA). Then, the optimal parameter level combination of multiple qualities is obtained through principal component analysis (PCA) and data envelopment analysis (DEA), respectively. It is observed that if all the quality characteristics of tensile strength, hardness, impact strength and bending strength are considered at the same time, the optimal process conditions are glass fiber addition 20 wt %, melt temperature 185 °C, injection speed 80 mm/s, holding pressure 60 MPa, holding time 1 s and cooling time 15 s, and the corresponding mechanical properties are tensile strength 95.04 MPa, hardness 86.52 Shore D, impact strength 4.4408 J/cm(2), bending strength 119.89 MPa. This study effectively enhances multiple qualities of PLA/GF composite. MDPI 2023-07-12 /pmc/articles/PMC10383581/ /pubmed/37514408 http://dx.doi.org/10.3390/polym15143018 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Hsiao, Chi-Hao
Huang, Chang-Chiun
Kuo, Chung-Feng Jeffrey
Ahmad, Naveed
Integration of Multivariate Statistical Control Chart and Machine Learning to Identify the Abnormal Process Parameters for Polylactide with Glass Fiber Composites in Injection Molding; Part I: The Processing Parameter Optimization for Multiple Qualities of Polylactide/Glass Fiber Composites in Injection Molding
title Integration of Multivariate Statistical Control Chart and Machine Learning to Identify the Abnormal Process Parameters for Polylactide with Glass Fiber Composites in Injection Molding; Part I: The Processing Parameter Optimization for Multiple Qualities of Polylactide/Glass Fiber Composites in Injection Molding
title_full Integration of Multivariate Statistical Control Chart and Machine Learning to Identify the Abnormal Process Parameters for Polylactide with Glass Fiber Composites in Injection Molding; Part I: The Processing Parameter Optimization for Multiple Qualities of Polylactide/Glass Fiber Composites in Injection Molding
title_fullStr Integration of Multivariate Statistical Control Chart and Machine Learning to Identify the Abnormal Process Parameters for Polylactide with Glass Fiber Composites in Injection Molding; Part I: The Processing Parameter Optimization for Multiple Qualities of Polylactide/Glass Fiber Composites in Injection Molding
title_full_unstemmed Integration of Multivariate Statistical Control Chart and Machine Learning to Identify the Abnormal Process Parameters for Polylactide with Glass Fiber Composites in Injection Molding; Part I: The Processing Parameter Optimization for Multiple Qualities of Polylactide/Glass Fiber Composites in Injection Molding
title_short Integration of Multivariate Statistical Control Chart and Machine Learning to Identify the Abnormal Process Parameters for Polylactide with Glass Fiber Composites in Injection Molding; Part I: The Processing Parameter Optimization for Multiple Qualities of Polylactide/Glass Fiber Composites in Injection Molding
title_sort integration of multivariate statistical control chart and machine learning to identify the abnormal process parameters for polylactide with glass fiber composites in injection molding; part i: the processing parameter optimization for multiple qualities of polylactide/glass fiber composites in injection molding
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383581/
https://www.ncbi.nlm.nih.gov/pubmed/37514408
http://dx.doi.org/10.3390/polym15143018
work_keys_str_mv AT hsiaochihao integrationofmultivariatestatisticalcontrolchartandmachinelearningtoidentifytheabnormalprocessparametersforpolylactidewithglassfibercompositesininjectionmoldingpartitheprocessingparameteroptimizationformultiplequalitiesofpolylactideglassfibercompositesini
AT huangchangchiun integrationofmultivariatestatisticalcontrolchartandmachinelearningtoidentifytheabnormalprocessparametersforpolylactidewithglassfibercompositesininjectionmoldingpartitheprocessingparameteroptimizationformultiplequalitiesofpolylactideglassfibercompositesini
AT kuochungfengjeffrey integrationofmultivariatestatisticalcontrolchartandmachinelearningtoidentifytheabnormalprocessparametersforpolylactidewithglassfibercompositesininjectionmoldingpartitheprocessingparameteroptimizationformultiplequalitiesofpolylactideglassfibercompositesini
AT ahmadnaveed integrationofmultivariatestatisticalcontrolchartandmachinelearningtoidentifytheabnormalprocessparametersforpolylactidewithglassfibercompositesininjectionmoldingpartitheprocessingparameteroptimizationformultiplequalitiesofpolylactideglassfibercompositesini