Cargando…

Single and Multiple Gate Design Optimization Algorithm for Improving the Effectiveness of Fiber Reinforcement in the Thermoplastic Injection Molding Process

Fiber reinforcement orientation in thermoplastic injection-molded components is both a strength as well as a weak point of this largely employed manufacturing process. Optimizing the fiber orientation distribution (FOD) considering the shape of the part and the applied loading conditions allows for...

Descripción completa

Detalles Bibliográficos
Autores principales: Perin, Mattia, Lim, Youngbin, Berti, Guido A., Lee, Taeyong, Jin, Kai, Quagliato, Luca
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383589/
https://www.ncbi.nlm.nih.gov/pubmed/37514484
http://dx.doi.org/10.3390/polym15143094
_version_ 1785080947763314688
author Perin, Mattia
Lim, Youngbin
Berti, Guido A.
Lee, Taeyong
Jin, Kai
Quagliato, Luca
author_facet Perin, Mattia
Lim, Youngbin
Berti, Guido A.
Lee, Taeyong
Jin, Kai
Quagliato, Luca
author_sort Perin, Mattia
collection PubMed
description Fiber reinforcement orientation in thermoplastic injection-molded components is both a strength as well as a weak point of this largely employed manufacturing process. Optimizing the fiber orientation distribution (FOD) considering the shape of the part and the applied loading conditions allows for enhancing the mechanical performances of the produced parts. Henceforth, this research proposes an algorithm to identify the best injection gate (IG) location/s starting from a 3D model and a user-defined load case. The procedure is composed of a first Visual Basic Architecture (VBA) code that automatically sets and runs Finite Volume Method (FVM) simulations to find the correlation between the fiber orientation tensor (FOT) and the IG locations considering single and multiple gates combinations up to three points. A second VBA code elaborates the results and builds a dataset considering the user-defined loading and constraint conditions, allowing the assignment of a score to each IG solution. Three geometrical components of increasing complexity were considered for a total of 1080 FVM simulations and a total computational time of ~390 h. The search for the best IG location has been further expanded by training a Machine Learning (ML) model based on the Gradient Boosting (GB) algorithm. The training database (DB) is based on FVM simulations and was expanded until a satisfactory prediction accuracy higher than 90% was achieved. The enhancement of the local FOD on the critical regions of three components was verified and showed an average improvement of 26.9% in the stiffness granted by a high directionality of the fibers along the load path. Finite element method (FEM) simulations and laboratory experiments on an industrial pump housing, injection-molded with a polyamide-66 reinforced with 30% of short glass fibers (PA66-30GF) material were also carried out to validate the FVM-FEM simulation frame and showed a 16.4% local stiffness improvement in comparison to the currently employed IG solution.
format Online
Article
Text
id pubmed-10383589
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-103835892023-07-30 Single and Multiple Gate Design Optimization Algorithm for Improving the Effectiveness of Fiber Reinforcement in the Thermoplastic Injection Molding Process Perin, Mattia Lim, Youngbin Berti, Guido A. Lee, Taeyong Jin, Kai Quagliato, Luca Polymers (Basel) Article Fiber reinforcement orientation in thermoplastic injection-molded components is both a strength as well as a weak point of this largely employed manufacturing process. Optimizing the fiber orientation distribution (FOD) considering the shape of the part and the applied loading conditions allows for enhancing the mechanical performances of the produced parts. Henceforth, this research proposes an algorithm to identify the best injection gate (IG) location/s starting from a 3D model and a user-defined load case. The procedure is composed of a first Visual Basic Architecture (VBA) code that automatically sets and runs Finite Volume Method (FVM) simulations to find the correlation between the fiber orientation tensor (FOT) and the IG locations considering single and multiple gates combinations up to three points. A second VBA code elaborates the results and builds a dataset considering the user-defined loading and constraint conditions, allowing the assignment of a score to each IG solution. Three geometrical components of increasing complexity were considered for a total of 1080 FVM simulations and a total computational time of ~390 h. The search for the best IG location has been further expanded by training a Machine Learning (ML) model based on the Gradient Boosting (GB) algorithm. The training database (DB) is based on FVM simulations and was expanded until a satisfactory prediction accuracy higher than 90% was achieved. The enhancement of the local FOD on the critical regions of three components was verified and showed an average improvement of 26.9% in the stiffness granted by a high directionality of the fibers along the load path. Finite element method (FEM) simulations and laboratory experiments on an industrial pump housing, injection-molded with a polyamide-66 reinforced with 30% of short glass fibers (PA66-30GF) material were also carried out to validate the FVM-FEM simulation frame and showed a 16.4% local stiffness improvement in comparison to the currently employed IG solution. MDPI 2023-07-19 /pmc/articles/PMC10383589/ /pubmed/37514484 http://dx.doi.org/10.3390/polym15143094 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Perin, Mattia
Lim, Youngbin
Berti, Guido A.
Lee, Taeyong
Jin, Kai
Quagliato, Luca
Single and Multiple Gate Design Optimization Algorithm for Improving the Effectiveness of Fiber Reinforcement in the Thermoplastic Injection Molding Process
title Single and Multiple Gate Design Optimization Algorithm for Improving the Effectiveness of Fiber Reinforcement in the Thermoplastic Injection Molding Process
title_full Single and Multiple Gate Design Optimization Algorithm for Improving the Effectiveness of Fiber Reinforcement in the Thermoplastic Injection Molding Process
title_fullStr Single and Multiple Gate Design Optimization Algorithm for Improving the Effectiveness of Fiber Reinforcement in the Thermoplastic Injection Molding Process
title_full_unstemmed Single and Multiple Gate Design Optimization Algorithm for Improving the Effectiveness of Fiber Reinforcement in the Thermoplastic Injection Molding Process
title_short Single and Multiple Gate Design Optimization Algorithm for Improving the Effectiveness of Fiber Reinforcement in the Thermoplastic Injection Molding Process
title_sort single and multiple gate design optimization algorithm for improving the effectiveness of fiber reinforcement in the thermoplastic injection molding process
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383589/
https://www.ncbi.nlm.nih.gov/pubmed/37514484
http://dx.doi.org/10.3390/polym15143094
work_keys_str_mv AT perinmattia singleandmultiplegatedesignoptimizationalgorithmforimprovingtheeffectivenessoffiberreinforcementinthethermoplasticinjectionmoldingprocess
AT limyoungbin singleandmultiplegatedesignoptimizationalgorithmforimprovingtheeffectivenessoffiberreinforcementinthethermoplasticinjectionmoldingprocess
AT bertiguidoa singleandmultiplegatedesignoptimizationalgorithmforimprovingtheeffectivenessoffiberreinforcementinthethermoplasticinjectionmoldingprocess
AT leetaeyong singleandmultiplegatedesignoptimizationalgorithmforimprovingtheeffectivenessoffiberreinforcementinthethermoplasticinjectionmoldingprocess
AT jinkai singleandmultiplegatedesignoptimizationalgorithmforimprovingtheeffectivenessoffiberreinforcementinthethermoplasticinjectionmoldingprocess
AT quagliatoluca singleandmultiplegatedesignoptimizationalgorithmforimprovingtheeffectivenessoffiberreinforcementinthethermoplasticinjectionmoldingprocess