Cargando…

Extroversion-Related Differences in Gaze Behavior during a Computer Task for Assessing Speed–Accuracy Trade-Off: Implications for Sensor-Based Applications

The principle of Fitts’ law explains that the difficulty of movement increases when targets are farther away and narrower in width, particularly when touching two parallel targets as quickly as possible. Understanding the differences in motor and gaze behaviors between extroverts and introverts when...

Descripción completa

Detalles Bibliográficos
Autores principales: Tosini, Laura, Gomes, Ana Carolina, Corbetta, Daniela M., Magalhães, Fernando Henrique, Meira, Cassio M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383621/
https://www.ncbi.nlm.nih.gov/pubmed/37514777
http://dx.doi.org/10.3390/s23146483
Descripción
Sumario:The principle of Fitts’ law explains that the difficulty of movement increases when targets are farther away and narrower in width, particularly when touching two parallel targets as quickly as possible. Understanding the differences in motor and gaze behaviors between extroverts and introverts when performing tasks that require speed and accuracy is crucial for the development of sensor-based interfaces for games and rehabilitation. This study aimed to investigate such differences in a computer task that assesses the speed–accuracy trade-off (Fitts’ task). Twenty introverts and seventeen extroverts wore an eye tracker and an accelerometer attached to their hand while performing 12 trials through six levels of difficulty presented on a computer screen. The results showed that introverts had longer visual fixations at the higher difficulty levels and reduced pupil diameter variability when difficulty was intermediate, suggesting that their gaze behavior may be different from that of extroverts. However, no significant differences were found in the speed and accuracy performance or kinematic variables between extroverts and introverts. These findings have important implications for the design of interventions that require both speed and accuracy in movement, such as in the development of virtual reality/games for rehabilitation purposes. It is important to consider individual differences in motor and gaze behaviors, particularly in those who may struggle with longer visual fixations, for the design of sensor-based applications and to promote successful interventions and recovery.