Cargando…
An Intelligent Cost-Reference Particle Filter with Resampling of Multi-Population Cooperation
Although the cost-reference particle filter (CRPF) has a good advantage in solving the state estimation problem with unknown noise statistical characteristics, its estimation accuracy is still affected by the lack of particle diversity and sensitivity to the particles’ initial value. In order to sol...
Autores principales: | Zhang, Xinyu, Ren, Mengjiao, Duan, Jiemin, Yi, Yingmin, Lei, Biyu, Wu, Shuyue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383641/ https://www.ncbi.nlm.nih.gov/pubmed/37514896 http://dx.doi.org/10.3390/s23146603 |
Ejemplares similares
-
MapReduce particle filtering with exact resampling and deterministic runtime
por: Thiyagalingam, Jeyarajan, et al.
Publicado: (2017) -
Resampling methods in Microsoft Excel® for estimating reference intervals
por: Theodorsson, Elvar
Publicado: (2015) -
Cost-Reference Particle Filter for Cognitive Radar Tracking Systems with Unknown Statistics
por: Zhong, Lei, et al.
Publicado: (2020) -
Fingerprint resampling: A generic method for efficient resampling
por: Mestdagh, Merijn, et al.
Publicado: (2015) -
An Indoor Navigation Algorithm Using Multi-Dimensional Euclidean Distance and an Adaptive Particle Filter
por: Hu, Yunbing, et al.
Publicado: (2021)