Cargando…

AGDF-Net: Attention-Gated and Direction-Field-Optimized Building Instance Extraction Network

Building extraction from high-resolution remote sensing images has various applications, such as urban planning and population estimation. However, buildings have intraclass heterogeneity and interclass homogeneity in high-resolution remote sensing images with complex backgrounds, which makes the ac...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Weizhi, Liu, Haixin, Liu, Chao, Kong, Junjie, Zhang, Can
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383642/
https://www.ncbi.nlm.nih.gov/pubmed/37514643
http://dx.doi.org/10.3390/s23146349
Descripción
Sumario:Building extraction from high-resolution remote sensing images has various applications, such as urban planning and population estimation. However, buildings have intraclass heterogeneity and interclass homogeneity in high-resolution remote sensing images with complex backgrounds, which makes the accurate extraction of building instances challenging and regular building boundaries difficult to maintain. In this paper, an attention-gated and direction-field-optimized building instance extraction network (AGDF-Net) is proposed. Two refinements are presented, including an Attention-Gated Feature Pyramid Network (AG-FPN) and a Direction Field Optimization Module (DFOM), which are used to improve information flow and optimize the mask, respectively. The AG-FPN promotes complementary semantic and detail information by measuring information importance to control the addition of low-level and high-level features. The DFOM predicts the pixel-level direction field of each instance and iteratively corrects the direction field based on the initial segmentation. Experimental results show that the proposed method outperforms the six state-of-the-art instance segmentation methods and three semantic segmentation methods. Specifically, AGDF-Net improves the objective-level metric AP and the pixel-level metric IoU by 1.1%~9.4% and 3.55%~5.06%.