Cargando…

Processes for the 3D Printing of Hydrodynamic Flow-Focusing Devices

Flow focusing is an important hydrodynamic technique for cytometric analysis, enabling the rapid study of cellular samples to identify a variety of biological processes. To date, the majority of flow-focusing devices are fabricated using conventional photolithography or flame processing of glass cap...

Descripción completa

Detalles Bibliográficos
Autores principales: Awate, Diwakar M., Holton, Seth, Meyer, Katherine, Juárez, Jaime J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383660/
https://www.ncbi.nlm.nih.gov/pubmed/37512699
http://dx.doi.org/10.3390/mi14071388
Descripción
Sumario:Flow focusing is an important hydrodynamic technique for cytometric analysis, enabling the rapid study of cellular samples to identify a variety of biological processes. To date, the majority of flow-focusing devices are fabricated using conventional photolithography or flame processing of glass capillaries. This article presents a suite of low-cost, millifluidic, flow-focusing devices that were fabricated using a desktop sterolithgraphy (SLA) 3D printer. The suite of SLA printing strategies consists of a monolithic SLA method and a hybrid molding process. In the monolithic SLA approach, 1.3 mm square millifluidic channels were printed as a single piece. The printed device does not require any post processing, such as bonding or surface polishing for optical access. The hybrid molding approach consists of printing a mold using the SLA 3D printer. The mold is treated to an extended UV exposure and oven baked before using PDMS as the molding material for the channel. To demonstrate the viability of these channels, we performed a series of experiments using several flow-rate ratios to show the range of focusing widths that can be achieved in these devices. The experiments are validated using a numerical model developed in ANSYS.