Cargando…
A Deep Learning Approach to Intrusion Detection and Segmentation in Pellet Fuels Using Microscopic Images
Pellet fuels are nowadays commonly used as a heat source for food preparation. Unfortunately, they may contain intrusions which might be harmful for humans and the environment. The intrusions can be identified precisely using immersed microscopy analysis. The aim of this study is to investigate the...
Autores principales: | Iwaszenko, Sebastian, Szymańska, Marta, Róg, Leokadia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383668/ https://www.ncbi.nlm.nih.gov/pubmed/37514782 http://dx.doi.org/10.3390/s23146488 |
Ejemplares similares
-
Intrusion Detection in IoT Using Deep Learning
por: Banaamah, Alaa Mohammed, et al.
Publicado: (2022) -
Network Anomaly Intrusion Detection Based on Deep Learning Approach
por: Wang, Yung-Chung, et al.
Publicado: (2023) -
Network intrusion detection using deep learning: a feature learning approach
por: Kim, Kwangjo, et al.
Publicado: (2018) -
Characterization of Mixed Pellets Made from Rubberwood (Hevea brasiliensis) and Refuse-Derived Fuel (RDF) Waste as Pellet Fuel
por: Laosena, Rattikal, et al.
Publicado: (2022) -
Towards Deep-Learning-Driven Intrusion Detection for the Internet of Things
por: Thamilarasu, Geethapriya, et al.
Publicado: (2019)