Cargando…
Tea-YOLOv8s: A Tea Bud Detection Model Based on Deep Learning and Computer Vision
Tea bud target detection is essential for mechanized selective harvesting. To address the challenges of low detection precision caused by the complex backgrounds of tea leaves, this paper introduces a novel model called Tea-YOLOv8s. First, multiple data augmentation techniques are employed to increa...
Autores principales: | Xie, Shuang, Sun, Hongwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383684/ https://www.ncbi.nlm.nih.gov/pubmed/37514870 http://dx.doi.org/10.3390/s23146576 |
Ejemplares similares
-
TBC-YOLOv7: a refined YOLOv7-based algorithm for tea bud grading detection
por: Wang, Siyang, et al.
Publicado: (2023) -
Rapid identification of chrysanthemum teas by computer vision and deep learning
por: Liu, Chunlin, et al.
Publicado: (2020) -
A Tea Buds Counting Method Based on YOLOv5 and Kalman Filter Tracking Algorithm
por: Li, Yang, et al.
Publicado: (2023) -
A tea bud segmentation, detection and picking point localization based on the MDY7-3PTB model
por: Zhang, Fenyun, et al.
Publicado: (2023) -
Tea leaf disease detection and identification based on YOLOv7 (YOLO-T)
por: Soeb, Md. Janibul Alam, et al.
Publicado: (2023)