Cargando…
A Radio Frequency Region-of-Interest Convolutional Neural Network for Wideband Spectrum Sensing
Wideband spectrum sensing plays a crucial role in various wireless communication applications. Traditional methods, such as energy detection with thresholding, have limitations like detecting signals with low signal-to-noise ratio (SNR). This article proposes a novel deep learning-based approach for...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383786/ https://www.ncbi.nlm.nih.gov/pubmed/37514776 http://dx.doi.org/10.3390/s23146480 |
Sumario: | Wideband spectrum sensing plays a crucial role in various wireless communication applications. Traditional methods, such as energy detection with thresholding, have limitations like detecting signals with low signal-to-noise ratio (SNR). This article proposes a novel deep learning-based approach for RF signal detection in the wideband spectrum. The objective is to accurately estimate the noise distribution in a wideband radio spectrogram and improve the detection performance by substracting it. The proposed method utilizes convolutional neural networks to analyze radio spectrograms. Model evaluation demonstrates that the RFROI-CNN approach outperforms the traditional energy detection with thresholding method by achieving significantly better detection results, even up to 6 dB, and expanding the capabilities of wideband spectrum sensing systems. The proposed approach, with its precise estimation of noise distribution and consideration of neighboring signal power values, proves to be a promising solution for RF signal detection. |
---|