Cargando…

A Radio Frequency Region-of-Interest Convolutional Neural Network for Wideband Spectrum Sensing

Wideband spectrum sensing plays a crucial role in various wireless communication applications. Traditional methods, such as energy detection with thresholding, have limitations like detecting signals with low signal-to-noise ratio (SNR). This article proposes a novel deep learning-based approach for...

Descripción completa

Detalles Bibliográficos
Autores principales: Olesiński, Adam, Piotrowski, Zbigniew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383786/
https://www.ncbi.nlm.nih.gov/pubmed/37514776
http://dx.doi.org/10.3390/s23146480
Descripción
Sumario:Wideband spectrum sensing plays a crucial role in various wireless communication applications. Traditional methods, such as energy detection with thresholding, have limitations like detecting signals with low signal-to-noise ratio (SNR). This article proposes a novel deep learning-based approach for RF signal detection in the wideband spectrum. The objective is to accurately estimate the noise distribution in a wideband radio spectrogram and improve the detection performance by substracting it. The proposed method utilizes convolutional neural networks to analyze radio spectrograms. Model evaluation demonstrates that the RFROI-CNN approach outperforms the traditional energy detection with thresholding method by achieving significantly better detection results, even up to 6 dB, and expanding the capabilities of wideband spectrum sensing systems. The proposed approach, with its precise estimation of noise distribution and consideration of neighboring signal power values, proves to be a promising solution for RF signal detection.