Cargando…
A Radio Frequency Region-of-Interest Convolutional Neural Network for Wideband Spectrum Sensing
Wideband spectrum sensing plays a crucial role in various wireless communication applications. Traditional methods, such as energy detection with thresholding, have limitations like detecting signals with low signal-to-noise ratio (SNR). This article proposes a novel deep learning-based approach for...
Autores principales: | Olesiński, Adam, Piotrowski, Zbigniew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383786/ https://www.ncbi.nlm.nih.gov/pubmed/37514776 http://dx.doi.org/10.3390/s23146480 |
Ejemplares similares
-
An Adaptive Energy Saving Algorithm for an RSSI-Based Localization System in Mobile Radio Sensors
por: Olesiński, Adam, et al.
Publicado: (2021) -
Wideband Spectrum Sensing Based on Riemannian Distance for Cognitive Radio Networks
por: Lu, Qiuyuan, et al.
Publicado: (2017) -
Ultra-Wideband Radio Frequency Identification Systems
por: Nekoogar, Faranak, et al.
Publicado: (2012) -
Wideband Spectrum Sensing Based on Single-Channel Sub-Nyquist Sampling for Cognitive Radio
por: Liu, Changjian, et al.
Publicado: (2018) -
An Efficient Distributed Approach for Cooperative Spectrum Sensing in Varying Interests Cognitive Radio Networks
por: Trigka, Maria, et al.
Publicado: (2022)