Cargando…
Strategies for the Preparation of Phosphorus Janus Dendrimers and Their Properties
Dendrimers, being highly branched monodispersed macromolecules, predominantly exhibit identical terminal functionalities within their structural framework. Nonetheless, there are instances where the presence of two distinct surface functionalities becomes advantageous for the fulfilment of specific...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383788/ https://www.ncbi.nlm.nih.gov/pubmed/37513445 http://dx.doi.org/10.3390/molecules28145570 |
_version_ | 1785080997136564224 |
---|---|
author | Cejas-Sánchez, Joel Kajetanowicz, Anna Grela, Karol Caminade, Anne-Marie Sebastián, Rosa María |
author_facet | Cejas-Sánchez, Joel Kajetanowicz, Anna Grela, Karol Caminade, Anne-Marie Sebastián, Rosa María |
author_sort | Cejas-Sánchez, Joel |
collection | PubMed |
description | Dendrimers, being highly branched monodispersed macromolecules, predominantly exhibit identical terminal functionalities within their structural framework. Nonetheless, there are instances where the presence of two distinct surface functionalities becomes advantageous for the fulfilment of specific properties. To achieve this objective, one approach involves implementing Janus dendrimers, consisting of two dendrimeric wedges terminated by dissimilar functionalities. The prevalent method for creating these structures involves the synthesis of dendrons that possess a core functionality that complements that of a second dendron, facilitating their coupling to generate the desired dendrimers. In this comprehensive review, various techniques employed in the fabrication of phosphorus-based Janus dendrimers are elucidated, displaying the different coupling methodologies employed between the two units. The advantages of phosphorus dendrimers over classic dendrimers will be shown, as the presence of at least one phosphorus atom in each generation allows for the easy monitoring of reactions and the confirmation of purity through a simple technique such as (31)P NMR, as these structures typically exhibit easily interpretable patterns. |
format | Online Article Text |
id | pubmed-10383788 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103837882023-07-30 Strategies for the Preparation of Phosphorus Janus Dendrimers and Their Properties Cejas-Sánchez, Joel Kajetanowicz, Anna Grela, Karol Caminade, Anne-Marie Sebastián, Rosa María Molecules Review Dendrimers, being highly branched monodispersed macromolecules, predominantly exhibit identical terminal functionalities within their structural framework. Nonetheless, there are instances where the presence of two distinct surface functionalities becomes advantageous for the fulfilment of specific properties. To achieve this objective, one approach involves implementing Janus dendrimers, consisting of two dendrimeric wedges terminated by dissimilar functionalities. The prevalent method for creating these structures involves the synthesis of dendrons that possess a core functionality that complements that of a second dendron, facilitating their coupling to generate the desired dendrimers. In this comprehensive review, various techniques employed in the fabrication of phosphorus-based Janus dendrimers are elucidated, displaying the different coupling methodologies employed between the two units. The advantages of phosphorus dendrimers over classic dendrimers will be shown, as the presence of at least one phosphorus atom in each generation allows for the easy monitoring of reactions and the confirmation of purity through a simple technique such as (31)P NMR, as these structures typically exhibit easily interpretable patterns. MDPI 2023-07-21 /pmc/articles/PMC10383788/ /pubmed/37513445 http://dx.doi.org/10.3390/molecules28145570 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Cejas-Sánchez, Joel Kajetanowicz, Anna Grela, Karol Caminade, Anne-Marie Sebastián, Rosa María Strategies for the Preparation of Phosphorus Janus Dendrimers and Their Properties |
title | Strategies for the Preparation of Phosphorus Janus Dendrimers and Their Properties |
title_full | Strategies for the Preparation of Phosphorus Janus Dendrimers and Their Properties |
title_fullStr | Strategies for the Preparation of Phosphorus Janus Dendrimers and Their Properties |
title_full_unstemmed | Strategies for the Preparation of Phosphorus Janus Dendrimers and Their Properties |
title_short | Strategies for the Preparation of Phosphorus Janus Dendrimers and Their Properties |
title_sort | strategies for the preparation of phosphorus janus dendrimers and their properties |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383788/ https://www.ncbi.nlm.nih.gov/pubmed/37513445 http://dx.doi.org/10.3390/molecules28145570 |
work_keys_str_mv | AT cejassanchezjoel strategiesforthepreparationofphosphorusjanusdendrimersandtheirproperties AT kajetanowiczanna strategiesforthepreparationofphosphorusjanusdendrimersandtheirproperties AT grelakarol strategiesforthepreparationofphosphorusjanusdendrimersandtheirproperties AT caminadeannemarie strategiesforthepreparationofphosphorusjanusdendrimersandtheirproperties AT sebastianrosamaria strategiesforthepreparationofphosphorusjanusdendrimersandtheirproperties |