Cargando…

Quercitrin Is a Novel Inhibitor of Salmonella enterica Serovar Typhimurium Type III Secretion System

The purpose was to screen type III secretory system (T3SS) inhibitors of Salmonella enterica serovar Typhimurium (S. Typhimurium) from natural compounds. The pharmacological activities and action mechanisms of candidate compounds in vivo and in vitro were systematically studied and analyzed. Using a...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Qingjie, Wang, Lianping, Xu, Jingwen, Liu, Shuang, Song, Zeyu, Chen, Tingting, Deng, Xuming, Wang, Jianfeng, Lv, Qianghua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383848/
https://www.ncbi.nlm.nih.gov/pubmed/37513327
http://dx.doi.org/10.3390/molecules28145455
Descripción
Sumario:The purpose was to screen type III secretory system (T3SS) inhibitors of Salmonella enterica serovar Typhimurium (S. Typhimurium) from natural compounds. The pharmacological activities and action mechanisms of candidate compounds in vivo and in vitro were systematically studied and analyzed. Using a SipA-β-lactamase fusion reporting system, we found that quercitrin significantly blocked the translocation of SipA into eukaryotic host cells without affecting the growth of bacteria. Adhesion and invasion assay showed that quercitrin inhibited S. Typhimurium invasion into host cells and reduced S. Typhimurium mediated host cell damage. β-galactosidase activity detection and Western blot analysis showed that quercitrin significantly inhibited the expression of SPI-1 genes (hilA and sopA) and effectors (SipA and SipC). The results of animal experiments showed that quercitrin significantly reduced colony colonization and alleviated the cecum pathological injury of the infected mice. Small molecule inhibitor quercitrin directly inhibited the function of T3SS and provided a potential antibiotic alternative against S. Typhimurium infection. Importance: T3SS plays a crucial role in the bacterial invasion and pathogenesis of S. Typhimurium. Compared with conventional antibiotics, small molecules could inhibit the virulence factors represented by S. Typhimurium T3SS. They have less pressure on bacterial vitality and a lower probability of producing drug resistance. Our results provide strong evidence for the development of novel inhibitors against S. Typhimurium infection.