Cargando…
IoT-Enabled Few-Shot Image Generation for Power Scene Defect Detection Based on Self-Attention and Global–Local Fusion
Defect detection in power scenarios is a critical task that plays a significant role in ensuring the safety, reliability, and efficiency of power systems. The existing technology requires enhancement in its learning ability from large volumes of data to achieve ideal detection effect results. Power...
Autores principales: | Chen, Yi, Yan, Yunfeng, Wang, Xianbo, Zheng, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383857/ https://www.ncbi.nlm.nih.gov/pubmed/37514825 http://dx.doi.org/10.3390/s23146531 |
Ejemplares similares
-
Application of New Sensor Technology and Few-Shot Learning in Education Based on IoT Era
por: Feng, Jianwen
Publicado: (2022) -
Insights into few shot learning approaches for image scene classification
por: Soudy, Mohamed, et al.
Publicado: (2021) -
Few-shot image classification algorithm based on attention mechanism and weight fusion
por: Meng, Xiaoxia, et al.
Publicado: (2023) -
Fog-enabled intelligent IoT systems
por: Yang, Yang, et al.
Publicado: (2019) -
Sensor Fusion and State Estimation of IoT Enabled Wind Energy Conversion System
por: Noor-A-Rahim, Md., et al.
Publicado: (2019)