Cargando…
Crop Identification Using Deep Learning on LUCAS Crop Cover Photos
Massive and high-quality in situ data are essential for Earth-observation-based agricultural monitoring. However, field surveying requires considerable organizational effort and money. Using computer vision to recognize crop types on geo-tagged photos could be a game changer allowing for the provisi...
Autores principales: | Yordanov, Momchil, d’Andrimont, Raphaël, Martinez-Sanchez, Laura, Lemoine, Guido, Fasbender, Dominique, van der Velde, Marijn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383911/ https://www.ncbi.nlm.nih.gov/pubmed/37514593 http://dx.doi.org/10.3390/s23146298 |
Ejemplares similares
-
Harmonised LUCAS in-situ land cover and use database for field surveys from 2006 to 2018 in the European Union
por: d’Andrimont, Raphaël, et al.
Publicado: (2020) -
Detecting flowering phenology in oil seed rape parcels with Sentinel-1 and -2 time series
por: d’Andrimont, Raphaël, et al.
Publicado: (2020) -
Comparing land surface phenology of major European crops as derived from SAR and multispectral data of Sentinel-1 and -2
por: Meroni, Michele, et al.
Publicado: (2021) -
Cover crops support ecological intensification of arable cropping systems
por: Wittwer, Raphaël A., et al.
Publicado: (2017) -
Impact of Cover Crops on the Soil Microbiome of Tree Crops
por: Castellano-Hinojosa, Antonio, et al.
Publicado: (2020)