Cargando…
Classification of Alzheimer’s Progression Using fMRI Data
In the last three decades, the development of functional magnetic resonance imaging (fMRI) has significantly contributed to the understanding of the brain, functional brain mapping, and resting-state brain networks. Given the recent successes of deep learning in various fields, we propose a 3D-CNN-L...
Autores principales: | Noh, Ju-Hyeon, Kim, Jun-Hyeok, Yang, Hee-Deok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383967/ https://www.ncbi.nlm.nih.gov/pubmed/37514624 http://dx.doi.org/10.3390/s23146330 |
Ejemplares similares
-
Generative Embedding for Model-Based Classification of fMRI Data
por: Brodersen, Kay H., et al.
Publicado: (2011) -
Wavelet-Based Fractal Analysis of rs-fMRI for Classification of Alzheimer’s Disease
por: Sadiq, Alishba, et al.
Publicado: (2022) -
Data Driven Classification Using fMRI Network Measures: Application to Schizophrenia
por: Moghimi, Pantea, et al.
Publicado: (2018) -
Design of Deep Learning Model for Task-Evoked fMRI Data Classification
por: Huang, Xiaojie, et al.
Publicado: (2021) -
Spatiotemporal feature extraction and classification of Alzheimer’s disease using deep learning 3D-CNN for fMRI data
por: Parmar, Harshit, et al.
Publicado: (2020)