Cargando…
Smartphone Authentication System Using Personal Gaits and a Deep Learning Model
In a society centered on hyper-connectivity, information sharing is crucial, but it must be ensured that each piece of information is viewed only by legitimate users; for this purpose, the medium that connects information and users must be able to identify illegal users. In this paper, we propose a...
Autores principales: | Choi, Jiwoo, Choi, Sangil, Kang, Taewon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383979/ https://www.ncbi.nlm.nih.gov/pubmed/37514689 http://dx.doi.org/10.3390/s23146395 |
Ejemplares similares
-
Gait-Based Implicit Authentication Using Edge Computing and Deep Learning for Mobile Devices
por: Zeng, Xin, et al.
Publicado: (2021) -
Secure and Privacy Enhanced Gait Authentication on Smart Phone
por: Hoang, Thang, et al.
Publicado: (2014) -
User Authentication in Smartphones for Telehealth
por: SMITH, KATHERINE A., et al.
Publicado: (2017) -
Intelligent Feature Selection for ECG-Based Personal Authentication Using Deep Reinforcement Learning
por: Baek, Suwhan, et al.
Publicado: (2023) -
Development of Smartphone Application for Markerless Three-Dimensional Motion Capture Based on Deep Learning Model
por: Aoyagi, Yukihiko, et al.
Publicado: (2022)