Cargando…

Mutual Coupling Reduction of a Multiple-Input Multiple-Output Antenna Using an Absorber Wall and a Combline Filter for V2X Communication

This paper presents an MIMO antenna for vehicle-to-everything (V2X) communication, which adopts two ways of combline filters and absorption wall decoupling. A combline filter and an absorption wall are used, respectively, for internal and external decoupling. The combline filter is incorporated betw...

Descripción completa

Detalles Bibliográficos
Autores principales: Fu, Yuanxu, Shen, Tao, Dou, Jiangling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384035/
https://www.ncbi.nlm.nih.gov/pubmed/37514649
http://dx.doi.org/10.3390/s23146355
Descripción
Sumario:This paper presents an MIMO antenna for vehicle-to-everything (V2X) communication, which adopts two ways of combline filters and absorption wall decoupling. A combline filter and an absorption wall are used, respectively, for internal and external decoupling. The combline filter is incorporated between the ground of the two adjacent antennas, which reduces the mutual coupling between them. Additionally, the mutual coupling of radiation between adjacent antennas is significantly reduced by the absorber wall. These combline filters and absorber walls use the method of electromagnetic field distribution to explain the reduction in the mutual coupling between the adjacent antennas. The transmission coefficient and surface current distribution explain the effectiveness of the decoupling structure. When the frequency is between 3.8 and 4.8 GHz, the simulation and measurement results show that [Formula: see text] is less than −10 dB, the bandwidth is 25% and the peak gain is 7.8 dBi. In addition, the proposed MIMO antenna has a high isolation between antenna units (>37 dB), and the envelop correlation coefficient (ECC) is less than 0.005.