Cargando…

DNA Repair Inhibitors: Potential Targets and Partners for Targeted Radionuclide Therapy

The present review aims to explore the potential targets/partners for future targeted radionuclide therapy (TRT) strategies, wherein cancer cells often are not killed effectively, despite receiving a high average tumor radiation dose. Here, we shall discuss the key factors in the cancer genome, espe...

Descripción completa

Detalles Bibliográficos
Autores principales: Obata, Honoka, Ogawa, Mikako, Zalutsky, Michael R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384049/
https://www.ncbi.nlm.nih.gov/pubmed/37514113
http://dx.doi.org/10.3390/pharmaceutics15071926
_version_ 1785081061790711808
author Obata, Honoka
Ogawa, Mikako
Zalutsky, Michael R.
author_facet Obata, Honoka
Ogawa, Mikako
Zalutsky, Michael R.
author_sort Obata, Honoka
collection PubMed
description The present review aims to explore the potential targets/partners for future targeted radionuclide therapy (TRT) strategies, wherein cancer cells often are not killed effectively, despite receiving a high average tumor radiation dose. Here, we shall discuss the key factors in the cancer genome, especially those related to DNA damage response/repair and maintenance systems for escaping cell death in cancer cells. To overcome the current limitations of TRT effectiveness due to radiation/drug-tolerant cells and tumor heterogeneity, and to make TRT more effective, we propose that a promising strategy would be to target the DNA maintenance factors that are crucial for cancer survival. Considering their cancer-specific DNA damage response/repair ability and dysregulated transcription/epigenetic system, key factors such as PARP, ATM/ATR, amplified/overexpressed transcription factors, and DNA methyltransferases have the potential to be molecular targets for Auger electron therapy; moreover, their inhibition by non-radioactive molecules could be a partnering component for enhancing the therapeutic response of TRT.
format Online
Article
Text
id pubmed-10384049
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-103840492023-07-30 DNA Repair Inhibitors: Potential Targets and Partners for Targeted Radionuclide Therapy Obata, Honoka Ogawa, Mikako Zalutsky, Michael R. Pharmaceutics Review The present review aims to explore the potential targets/partners for future targeted radionuclide therapy (TRT) strategies, wherein cancer cells often are not killed effectively, despite receiving a high average tumor radiation dose. Here, we shall discuss the key factors in the cancer genome, especially those related to DNA damage response/repair and maintenance systems for escaping cell death in cancer cells. To overcome the current limitations of TRT effectiveness due to radiation/drug-tolerant cells and tumor heterogeneity, and to make TRT more effective, we propose that a promising strategy would be to target the DNA maintenance factors that are crucial for cancer survival. Considering their cancer-specific DNA damage response/repair ability and dysregulated transcription/epigenetic system, key factors such as PARP, ATM/ATR, amplified/overexpressed transcription factors, and DNA methyltransferases have the potential to be molecular targets for Auger electron therapy; moreover, their inhibition by non-radioactive molecules could be a partnering component for enhancing the therapeutic response of TRT. MDPI 2023-07-11 /pmc/articles/PMC10384049/ /pubmed/37514113 http://dx.doi.org/10.3390/pharmaceutics15071926 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Obata, Honoka
Ogawa, Mikako
Zalutsky, Michael R.
DNA Repair Inhibitors: Potential Targets and Partners for Targeted Radionuclide Therapy
title DNA Repair Inhibitors: Potential Targets and Partners for Targeted Radionuclide Therapy
title_full DNA Repair Inhibitors: Potential Targets and Partners for Targeted Radionuclide Therapy
title_fullStr DNA Repair Inhibitors: Potential Targets and Partners for Targeted Radionuclide Therapy
title_full_unstemmed DNA Repair Inhibitors: Potential Targets and Partners for Targeted Radionuclide Therapy
title_short DNA Repair Inhibitors: Potential Targets and Partners for Targeted Radionuclide Therapy
title_sort dna repair inhibitors: potential targets and partners for targeted radionuclide therapy
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384049/
https://www.ncbi.nlm.nih.gov/pubmed/37514113
http://dx.doi.org/10.3390/pharmaceutics15071926
work_keys_str_mv AT obatahonoka dnarepairinhibitorspotentialtargetsandpartnersfortargetedradionuclidetherapy
AT ogawamikako dnarepairinhibitorspotentialtargetsandpartnersfortargetedradionuclidetherapy
AT zalutskymichaelr dnarepairinhibitorspotentialtargetsandpartnersfortargetedradionuclidetherapy