Cargando…
Human Interaction Classification in Sliding Video Windows Using Skeleton Data Tracking and Feature Extraction †
A “long short-term memory” (LSTM)-based human activity classifier is presented for skeleton data estimated in video frames. A strong feature engineering step precedes the deep neural network processing. The video was analyzed in short-time chunks created by a sliding window. A fixed number of video...
Autores principales: | Puchała, Sebastian, Kasprzak, Włodzimierz, Piwowarski, Paweł |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384121/ https://www.ncbi.nlm.nih.gov/pubmed/37514573 http://dx.doi.org/10.3390/s23146279 |
Ejemplares similares
-
Video Summarization Based on Mutual Information and Entropy Sliding Window Method
por: Li, WenLin, et al.
Publicado: (2020) -
Streaming Feature Selection for Multi-Label Data with Dynamic Sliding Windows and Feature Repulsion Loss
por: Li, Yu, et al.
Publicado: (2019) -
Sliding Window-Based Region of Interest Extraction for Finger Vein Images
por: Yang, Lu, et al.
Publicado: (2013) -
Ship Spatiotemporal Key Feature Point Online Extraction Based on AIS Multi-Sensor Data Using an Improved Sliding Window Algorithm
por: Gao, Miao, et al.
Publicado: (2019) -
An improved model using convolutional sliding window-attention network for motor imagery EEG classification
por: Huang, Yuxuan, et al.
Publicado: (2023)