Cargando…
Structure and Properties of Carboxylated Carbon Nanotubes@Expanded Graphite/Polyethersulfone Composite Bipolar Plates for PEM
Composite bipolar plates (BPs) hinder their application in proton exchange membrane fuel cells (PEMFC) because of their poor conductivity and mechanical properties. Nanofillers can effectively solve this problem but often have a limited effect due to their easy agglomeration. In this work, a continu...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384210/ https://www.ncbi.nlm.nih.gov/pubmed/37513068 http://dx.doi.org/10.3390/nano13142055 |
_version_ | 1785081101905035264 |
---|---|
author | Li, Wenkai Zhao, Yixin Pan, Xingchen Liu, Mingqi Qiu, Shi Xie, Zhiyong |
author_facet | Li, Wenkai Zhao, Yixin Pan, Xingchen Liu, Mingqi Qiu, Shi Xie, Zhiyong |
author_sort | Li, Wenkai |
collection | PubMed |
description | Composite bipolar plates (BPs) hinder their application in proton exchange membrane fuel cells (PEMFC) because of their poor conductivity and mechanical properties. Nanofillers can effectively solve this problem but often have a limited effect due to their easy agglomeration. In this work, a continuous mesh carboxylated multi-walled carbon nanotube (MWCNT) coating on the surface of graphite was synthesized by chemical vapor deposition (CVD) and carboxylation modification, and the composite BPs were prepared by molding using prepared reticulated carboxylated MWCNTs, expanded graphite, and resin. By optimizing the carboxylation treatment time and the content of the nano-filler, the composite BPs had the best performance at a 15 min carboxylation treatment time and 2.4% filler content. The planar conductivity reached up to 243.52 S/cm, while the flexural strength increased to 61.9 MPa. The thermal conductivity and hydrophobicity were improved compared with the conventional graphite/resin composite BPs, and good corrosion resistance has been demonstrated under the PEMFC operating environment. This work provides a novel nanofiller modification paradigm for PBs. |
format | Online Article Text |
id | pubmed-10384210 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103842102023-07-30 Structure and Properties of Carboxylated Carbon Nanotubes@Expanded Graphite/Polyethersulfone Composite Bipolar Plates for PEM Li, Wenkai Zhao, Yixin Pan, Xingchen Liu, Mingqi Qiu, Shi Xie, Zhiyong Nanomaterials (Basel) Article Composite bipolar plates (BPs) hinder their application in proton exchange membrane fuel cells (PEMFC) because of their poor conductivity and mechanical properties. Nanofillers can effectively solve this problem but often have a limited effect due to their easy agglomeration. In this work, a continuous mesh carboxylated multi-walled carbon nanotube (MWCNT) coating on the surface of graphite was synthesized by chemical vapor deposition (CVD) and carboxylation modification, and the composite BPs were prepared by molding using prepared reticulated carboxylated MWCNTs, expanded graphite, and resin. By optimizing the carboxylation treatment time and the content of the nano-filler, the composite BPs had the best performance at a 15 min carboxylation treatment time and 2.4% filler content. The planar conductivity reached up to 243.52 S/cm, while the flexural strength increased to 61.9 MPa. The thermal conductivity and hydrophobicity were improved compared with the conventional graphite/resin composite BPs, and good corrosion resistance has been demonstrated under the PEMFC operating environment. This work provides a novel nanofiller modification paradigm for PBs. MDPI 2023-07-12 /pmc/articles/PMC10384210/ /pubmed/37513068 http://dx.doi.org/10.3390/nano13142055 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Wenkai Zhao, Yixin Pan, Xingchen Liu, Mingqi Qiu, Shi Xie, Zhiyong Structure and Properties of Carboxylated Carbon Nanotubes@Expanded Graphite/Polyethersulfone Composite Bipolar Plates for PEM |
title | Structure and Properties of Carboxylated Carbon Nanotubes@Expanded Graphite/Polyethersulfone Composite Bipolar Plates for PEM |
title_full | Structure and Properties of Carboxylated Carbon Nanotubes@Expanded Graphite/Polyethersulfone Composite Bipolar Plates for PEM |
title_fullStr | Structure and Properties of Carboxylated Carbon Nanotubes@Expanded Graphite/Polyethersulfone Composite Bipolar Plates for PEM |
title_full_unstemmed | Structure and Properties of Carboxylated Carbon Nanotubes@Expanded Graphite/Polyethersulfone Composite Bipolar Plates for PEM |
title_short | Structure and Properties of Carboxylated Carbon Nanotubes@Expanded Graphite/Polyethersulfone Composite Bipolar Plates for PEM |
title_sort | structure and properties of carboxylated carbon nanotubes@expanded graphite/polyethersulfone composite bipolar plates for pem |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384210/ https://www.ncbi.nlm.nih.gov/pubmed/37513068 http://dx.doi.org/10.3390/nano13142055 |
work_keys_str_mv | AT liwenkai structureandpropertiesofcarboxylatedcarbonnanotubesexpandedgraphitepolyethersulfonecompositebipolarplatesforpem AT zhaoyixin structureandpropertiesofcarboxylatedcarbonnanotubesexpandedgraphitepolyethersulfonecompositebipolarplatesforpem AT panxingchen structureandpropertiesofcarboxylatedcarbonnanotubesexpandedgraphitepolyethersulfonecompositebipolarplatesforpem AT liumingqi structureandpropertiesofcarboxylatedcarbonnanotubesexpandedgraphitepolyethersulfonecompositebipolarplatesforpem AT qiushi structureandpropertiesofcarboxylatedcarbonnanotubesexpandedgraphitepolyethersulfonecompositebipolarplatesforpem AT xiezhiyong structureandpropertiesofcarboxylatedcarbonnanotubesexpandedgraphitepolyethersulfonecompositebipolarplatesforpem |