Cargando…

Visual Quantitative Detection of Delamination Defects in GFRP via Microwave

Glass Fiber reinforced polymers (GFRPs) are widely used and play an important role in modern society. The multilayer structure of GFRPs can lead to delamination defects during production and service, which can have a significant impact on the integrity and safety of the equipment. Therefore, it is i...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Xihan, Fang, Yang, Wang, Ruonan, Li, Yong, Chen, Zhenmao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384237/
https://www.ncbi.nlm.nih.gov/pubmed/37514680
http://dx.doi.org/10.3390/s23146386
Descripción
Sumario:Glass Fiber reinforced polymers (GFRPs) are widely used and play an important role in modern society. The multilayer structure of GFRPs can lead to delamination defects during production and service, which can have a significant impact on the integrity and safety of the equipment. Therefore, it is important to monitor these delamination defects during equipment service in order to evaluate their effects on equipment performance and lifespan. Microwave imaging testing, with its high sensitivity and noncontact nature, shows promise as a potential method for detecting delamination defects in GFRPs. However, there is currently limited research on the quantitative characterization of defect images in this field. In order to achieve visual quantitative nondestructive testing (NDT), we propose a 2D-imaging visualization and quantitative characterization method for delamination defects in GFRP, and realize the combination of visual detection and quantitative detection. We built a microwave testing experimental system to verify the effectiveness of the proposed method. The results of the experiment indicate the effectiveness and innovation of the method, which can effectively detect all delamination defects of 0.5 mm thickness inside GFRP with high accuracy, the signal-to-background ratio (SBR) of 2D imaging can reach 4.41 dB, the quantitative error of position is within 0.5 mm, and the relative error of area is within 11%.