Cargando…
Rolling Bearing Fault Diagnosis Based on Support Vector Machine Optimized by Improved Grey Wolf Algorithm
This study targets the low accuracy and efficiency of the support vector machine (SVM) algorithm in rolling bearing fault diagnosis. An improved grey wolf optimizer (IGWO) algorithm was proposed based on deep learning and a swarm intelligence optimization algorithm to optimize the structural paramet...
Autores principales: | Shen, Weijie, Xiao, Maohua, Wang, Zhenyu, Song, Xinmin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384382/ https://www.ncbi.nlm.nih.gov/pubmed/37514940 http://dx.doi.org/10.3390/s23146645 |
Ejemplares similares
-
Sensor Fault Diagnosis Method Based on α-Grey Wolf Optimization-Support Vector Machine
por: Cheng, Xuezhen, et al.
Publicado: (2021) -
Bayesian-Optimized Hybrid Kernel SVM for Rolling Bearing Fault Diagnosis
por: Song, Xinmin, et al.
Publicado: (2023) -
Multi-objective Informative Frequency Band Selection Based on Negentropy-induced Grey Wolf Optimizer for Fault Diagnosis of Rolling Element Bearings
por: Gu, Xiaohui, et al.
Publicado: (2020) -
Bearing Fault-Detection Method Based on Improved Grey Wolf Algorithm to Optimize Parameters of Multistable Stochastic Resonance
por: Huang, Weichao, et al.
Publicado: (2023) -
Ambient Air Quality Classification by Grey Wolf Optimizer Based Support Vector Machine
por: Saxena, Akash, et al.
Publicado: (2017)