Cargando…

Optimization of Printing Parameters to Enhance Tensile Properties of ABS and Nylon Produced by Fused Filament Fabrication

This study aimed to identify the optimum printing parameters for the fused filament fabrication (FFF) of acrylonitrile butadiene styrene (ABS) and polyamide (nylon), to improve strength properties. For this purpose, the methodology of the paper involves an experimental study that used Taguchi’s meth...

Descripción completa

Detalles Bibliográficos
Autores principales: Yankin, Andrei, Alipov, Yerassyl, Temirgali, Ali, Serik, Gaini, Danenova, Saniya, Talamona, Didier, Perveen, Asma
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384517/
https://www.ncbi.nlm.nih.gov/pubmed/37514431
http://dx.doi.org/10.3390/polym15143043
Descripción
Sumario:This study aimed to identify the optimum printing parameters for the fused filament fabrication (FFF) of acrylonitrile butadiene styrene (ABS) and polyamide (nylon), to improve strength properties. For this purpose, the methodology of the paper involves an experimental study that used Taguchi’s method to identify the effects of the infill pattern, infill density, and printing speed on the mechanical properties of the materials. ABS and nylon plastic parts were tested in tension to failure. Based on the results of the tensile tests, it was found that ABS material produced the highest ultimate tensile strength when printed using a tri-hexagonal infill pattern, 100% infill density, and a printing speed of 65 mm/s. On the other hand, nylon material exhibited a better performance when printed using an octet geometric structure, with identical other parameters.