Cargando…
The Mechanism of bnAb Production and Its Application in Mutable Virus Broad-Spectrum Vaccines: Inspiration from HIV-1 Broad Neutralization Research
Elite controllers among HIV-1-infected individuals have demonstrated a stronger ability to control the viral load in their bodies. Scientists have isolated antibodies with strong neutralizing ability from these individuals, which can neutralize HIV-1 variations; these are known as broadly neutralizi...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384589/ https://www.ncbi.nlm.nih.gov/pubmed/37514959 http://dx.doi.org/10.3390/vaccines11071143 |
Sumario: | Elite controllers among HIV-1-infected individuals have demonstrated a stronger ability to control the viral load in their bodies. Scientists have isolated antibodies with strong neutralizing ability from these individuals, which can neutralize HIV-1 variations; these are known as broadly neutralizing antibodies. The nucleic acid of some viruses will constantly mutate during replication (such as SARS-CoV-2), which will reduce the protective ability of the corresponding vaccines. The immune escape caused by this mutation is the most severe challenge faced by humans in the battle against the virus. Therefore, developing broad-spectrum vaccines that can induce broadly neutralizing antibodies against various viruses and their mutated strains is the best way to combat virus mutations. Exploring the mechanism by which the human immune system produces broadly neutralizing antibodies and its induction strategies is crucial in the design process of broad-spectrum vaccines. |
---|