Cargando…

MOF-Derived Co Nanoparticles Catalyst Assisted by F- and N-Doped Carbon Quantum Dots for Oxygen Reduction

The oxygen reduction reaction is crucial in the cathode of fuel cells and metal–air batteries. Consequently, designing robust and durable ORR catalysts is vital to developing metal–air batteries and fuel cells. Metal–organic frameworks feature an adjustable structure, a periodic porosity, and a larg...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Yuqi, Sung, Ki-Wook, Ahn, Hyo-Jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384604/
https://www.ncbi.nlm.nih.gov/pubmed/37513104
http://dx.doi.org/10.3390/nano13142093
Descripción
Sumario:The oxygen reduction reaction is crucial in the cathode of fuel cells and metal–air batteries. Consequently, designing robust and durable ORR catalysts is vital to developing metal–air batteries and fuel cells. Metal–organic frameworks feature an adjustable structure, a periodic porosity, and a large specific surface area, endowing their derivative materials with a unique structure. In this study, F and N co-doped on the carbon support surface (Co/FN-C) via the pyrolysis of ZIF-67 as a sacrificial template while using Co/FN-C as the non-noble metal catalysts. The Co/FN-C displays excellent long-term durability and electrochemical catalytic performance in acidic solutions. These performance improvements are achieved because the CQDs alleviate the structural collapse during the pyrolysis of ZIF-67, which increases the active sites in the Co nanoparticles. Moreover, F- and N-doping improves the catalytic activity of the carbon support by providing additional electrons and active sites. Furthermore, F anions are redox-stable ligands that exhibit long-term operational stability. Therefore, the well-dispersed Co NPs on the surface of the Co/FN-C are promising as the non-noble metal catalysts for ORR.