Cargando…
MFAFNet: A Lightweight and Efficient Network with Multi-Level Feature Adaptive Fusion for Real-Time Semantic Segmentation
Currently, real-time semantic segmentation networks are intensely demanded in resource-constrained practical applications, such as mobile devices, drones and autonomous driving systems. However, most of the current popular approaches have difficulty in obtaining sufficiently large receptive fields,...
Autores principales: | Lu, Kai, Cheng, Jieren, Li, Hua, Ouyang, Tianyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384613/ https://www.ncbi.nlm.nih.gov/pubmed/37514676 http://dx.doi.org/10.3390/s23146382 |
Ejemplares similares
-
A lightweight multi-dimension dynamic convolutional network for real-time semantic segmentation
por: Zhang, Chunyu, et al.
Publicado: (2022) -
MFEAFN: Multi-scale feature enhanced adaptive fusion network for image semantic segmentation
por: Li, Shusheng, et al.
Publicado: (2022) -
Lightweight and efficient dual-path fusion network for iris segmentation
por: Lei, Songze, et al.
Publicado: (2023) -
Point Cloud Semantic Segmentation Network Based on Multi-Scale Feature Fusion
por: Du, Jing, et al.
Publicado: (2021) -
Rethinking 1D convolution for lightweight semantic segmentation
por: Zhang, Chunyu, et al.
Publicado: (2023)