Cargando…
Material Data Identification in an Induction Hardening Test Rig with Physics-Informed Neural Networks
Physics-Informed neural networks (PINNs) have demonstrated remarkable performance in solving partial differential equations (PDEs) by incorporating the governing PDEs into the network’s loss function during optimization. PINNs have been successfully applied to diverse inverse and forward problems. T...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384654/ https://www.ncbi.nlm.nih.gov/pubmed/37512288 http://dx.doi.org/10.3390/ma16145013 |
_version_ | 1785081210470400000 |
---|---|
author | Asadzadeh, Mohammad Zhian Roppert, Klaus Raninger, Peter |
author_facet | Asadzadeh, Mohammad Zhian Roppert, Klaus Raninger, Peter |
author_sort | Asadzadeh, Mohammad Zhian |
collection | PubMed |
description | Physics-Informed neural networks (PINNs) have demonstrated remarkable performance in solving partial differential equations (PDEs) by incorporating the governing PDEs into the network’s loss function during optimization. PINNs have been successfully applied to diverse inverse and forward problems. This study investigates the feasibility of using PINNs for material data identification in an induction hardening test rig. By utilizing temperature sensor data and imposing the heat equation with initial and boundary conditions, thermo-physical material properties, such as specific heat, thermal conductivity, and the heat convection coefficient, were estimated. To validate the effectiveness of the PINNs in material data estimation, benchmark data generated by a finite element model (FEM) of an air-cooled cylindrical sample were used. The accurate identification of the material data using only a limited number of virtual temperature sensor data points was demonstrated. The influence of the sensor positions and measurement noise on the uncertainty of the estimated parameters was examined. The study confirms the robustness and accuracy of this approach in the presence of measurement noise, albeit with lower efficiency, thereby requiring more time to converge. Lastly, the applicability of the presented approach to real measurement data obtained from an air-cooled cylindrical sample heated in an induction heating test rig was discussed. This research contributes to the accurate offline estimation of material data and has implications for optimizing induction heat treatments. |
format | Online Article Text |
id | pubmed-10384654 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103846542023-07-30 Material Data Identification in an Induction Hardening Test Rig with Physics-Informed Neural Networks Asadzadeh, Mohammad Zhian Roppert, Klaus Raninger, Peter Materials (Basel) Article Physics-Informed neural networks (PINNs) have demonstrated remarkable performance in solving partial differential equations (PDEs) by incorporating the governing PDEs into the network’s loss function during optimization. PINNs have been successfully applied to diverse inverse and forward problems. This study investigates the feasibility of using PINNs for material data identification in an induction hardening test rig. By utilizing temperature sensor data and imposing the heat equation with initial and boundary conditions, thermo-physical material properties, such as specific heat, thermal conductivity, and the heat convection coefficient, were estimated. To validate the effectiveness of the PINNs in material data estimation, benchmark data generated by a finite element model (FEM) of an air-cooled cylindrical sample were used. The accurate identification of the material data using only a limited number of virtual temperature sensor data points was demonstrated. The influence of the sensor positions and measurement noise on the uncertainty of the estimated parameters was examined. The study confirms the robustness and accuracy of this approach in the presence of measurement noise, albeit with lower efficiency, thereby requiring more time to converge. Lastly, the applicability of the presented approach to real measurement data obtained from an air-cooled cylindrical sample heated in an induction heating test rig was discussed. This research contributes to the accurate offline estimation of material data and has implications for optimizing induction heat treatments. MDPI 2023-07-15 /pmc/articles/PMC10384654/ /pubmed/37512288 http://dx.doi.org/10.3390/ma16145013 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Asadzadeh, Mohammad Zhian Roppert, Klaus Raninger, Peter Material Data Identification in an Induction Hardening Test Rig with Physics-Informed Neural Networks |
title | Material Data Identification in an Induction Hardening Test Rig with Physics-Informed Neural Networks |
title_full | Material Data Identification in an Induction Hardening Test Rig with Physics-Informed Neural Networks |
title_fullStr | Material Data Identification in an Induction Hardening Test Rig with Physics-Informed Neural Networks |
title_full_unstemmed | Material Data Identification in an Induction Hardening Test Rig with Physics-Informed Neural Networks |
title_short | Material Data Identification in an Induction Hardening Test Rig with Physics-Informed Neural Networks |
title_sort | material data identification in an induction hardening test rig with physics-informed neural networks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384654/ https://www.ncbi.nlm.nih.gov/pubmed/37512288 http://dx.doi.org/10.3390/ma16145013 |
work_keys_str_mv | AT asadzadehmohammadzhian materialdataidentificationinaninductionhardeningtestrigwithphysicsinformedneuralnetworks AT roppertklaus materialdataidentificationinaninductionhardeningtestrigwithphysicsinformedneuralnetworks AT raningerpeter materialdataidentificationinaninductionhardeningtestrigwithphysicsinformedneuralnetworks |