Cargando…
Material Data Identification in an Induction Hardening Test Rig with Physics-Informed Neural Networks
Physics-Informed neural networks (PINNs) have demonstrated remarkable performance in solving partial differential equations (PDEs) by incorporating the governing PDEs into the network’s loss function during optimization. PINNs have been successfully applied to diverse inverse and forward problems. T...
Autores principales: | Asadzadeh, Mohammad Zhian, Roppert, Klaus, Raninger, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384654/ https://www.ncbi.nlm.nih.gov/pubmed/37512288 http://dx.doi.org/10.3390/ma16145013 |
Ejemplares similares
-
Inverse Model for the Control of Induction Heat Treatments
por: Asadzadeh, Mohammad Zhian, et al.
Publicado: (2019) -
A Posteriori Reconstruction of the Temperature Distribution in Surface Hardened Tempering Steel
por: Mevec, Daniel G., et al.
Publicado: (2020) -
Physically informed artificial neural networks for atomistic modeling of materials
por: Pun, G. P. Purja, et al.
Publicado: (2019) -
Iterative Beam Hardening Correction for Multi-Material Objects
por: Zhao, Yunsong, et al.
Publicado: (2015) -
Thermally Switching On/Off the Hardening of Soaked Nanocomposite Materials
por: Pérez-Madrigal, Maria M., et al.
Publicado: (2017)