Cargando…

Preparation of Thin Film Composite (TFC) Membrane with DESPs Interlayer and Its Forward Osmosis (FO) Performance for Organic Solvent Recovery

To explore the application of forward osmosis (FO) technology in the organic solvent recovery field, we prepared a new solvent-resistant triple layer thin film composite (TFC) membrane on the PI (polyimide) substrate. The deep eutectic supramolecular polymers (DESPs) interlayer was constructed on th...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Jingyi, Huang, Hansheng, Zhang, Hao, Wu, Yanhui, Zhuang, Yongbing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384680/
https://www.ncbi.nlm.nih.gov/pubmed/37505054
http://dx.doi.org/10.3390/membranes13070688
Descripción
Sumario:To explore the application of forward osmosis (FO) technology in the organic solvent recovery field, we prepared a new solvent-resistant triple layer thin film composite (TFC) membrane on the PI (polyimide) substrate. The deep eutectic supramolecular polymers (DESPs) interlayer was constructed on the substrate to improve the separation performance and solvent resistance. DESPs interlayer was formed by mixing and heating with cyclodextrin as the hydrogen bond acceptor and L-malic acid as the hydrogen bond donor. The chemical changes, surface property and morphology of the composite membrane with DESPs interlayer were characterized. The separation performance and stability of the triple layer composite membrane in organic solvent FO were studied. For the monascorubrin-ethanol system, the permeation flux of TFC/DESPs5-PI membrane could reach 9.51 LMH while the rejection rate of monascorubrin was 98.4% (1.0 M LiCl/ethanol as draw solution), which was better than the pristine membrane. Therefore, this solvent-resistant triple layer composite FO membrane has good potential for the recovery of organic solvents.