Cargando…
Research on the Heating Process of CFRP Circular Tubes Based on Electromagnetic Induction Heating Method
Based on the electromagnetic induction heating method, heating and curing of Carbon Fiber Reinforced Polymer (CFRP) have the advantages of high energy utilization and no pollution. However, in the heating process, both the material weaving structure and mold material can affect the temperature field...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384686/ https://www.ncbi.nlm.nih.gov/pubmed/37514428 http://dx.doi.org/10.3390/polym15143039 |
_version_ | 1785081218181627904 |
---|---|
author | Xu, Jiazhong Gu, Yunfei Fu, Tianyu Zhang, Xiaobing Zhang, Hao |
author_facet | Xu, Jiazhong Gu, Yunfei Fu, Tianyu Zhang, Xiaobing Zhang, Hao |
author_sort | Xu, Jiazhong |
collection | PubMed |
description | Based on the electromagnetic induction heating method, heating and curing of Carbon Fiber Reinforced Polymer (CFRP) have the advantages of high energy utilization and no pollution. However, in the heating process, both the material weaving structure and mold material can affect the temperature field. Therefore, in this study, an electromagnetic heating finite element analysis model for CFRP circular tubes was established based on the equivalent electromagnetic thermal characteristics of CFRP. The study investigated the temperature rise mechanism of the material weaving structure under the magnetic field, and explored in-depth the influence of molds made of 45# steel and glass fiber-reinforced plastic (FRP) on the heating process of CFRP. The CFRP circular tubes with weaving structures of 89-degree winding angle, 45-degree winding angle, and plain weave were studied. The study found that when the metal mold was heated, the CFRP structure had almost no effect on the temperature distribution. However, when the glass fiber-reinforced plastic mold was heated, the temperature field changed with the CFRP structure, and the more fiber cross points, the more uniform the temperature field. The accuracy of the finite element model was verified through experiments. The aim of this research is to provide theoretical guidance for actual industrial production. |
format | Online Article Text |
id | pubmed-10384686 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103846862023-07-30 Research on the Heating Process of CFRP Circular Tubes Based on Electromagnetic Induction Heating Method Xu, Jiazhong Gu, Yunfei Fu, Tianyu Zhang, Xiaobing Zhang, Hao Polymers (Basel) Article Based on the electromagnetic induction heating method, heating and curing of Carbon Fiber Reinforced Polymer (CFRP) have the advantages of high energy utilization and no pollution. However, in the heating process, both the material weaving structure and mold material can affect the temperature field. Therefore, in this study, an electromagnetic heating finite element analysis model for CFRP circular tubes was established based on the equivalent electromagnetic thermal characteristics of CFRP. The study investigated the temperature rise mechanism of the material weaving structure under the magnetic field, and explored in-depth the influence of molds made of 45# steel and glass fiber-reinforced plastic (FRP) on the heating process of CFRP. The CFRP circular tubes with weaving structures of 89-degree winding angle, 45-degree winding angle, and plain weave were studied. The study found that when the metal mold was heated, the CFRP structure had almost no effect on the temperature distribution. However, when the glass fiber-reinforced plastic mold was heated, the temperature field changed with the CFRP structure, and the more fiber cross points, the more uniform the temperature field. The accuracy of the finite element model was verified through experiments. The aim of this research is to provide theoretical guidance for actual industrial production. MDPI 2023-07-14 /pmc/articles/PMC10384686/ /pubmed/37514428 http://dx.doi.org/10.3390/polym15143039 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Xu, Jiazhong Gu, Yunfei Fu, Tianyu Zhang, Xiaobing Zhang, Hao Research on the Heating Process of CFRP Circular Tubes Based on Electromagnetic Induction Heating Method |
title | Research on the Heating Process of CFRP Circular Tubes Based on Electromagnetic Induction Heating Method |
title_full | Research on the Heating Process of CFRP Circular Tubes Based on Electromagnetic Induction Heating Method |
title_fullStr | Research on the Heating Process of CFRP Circular Tubes Based on Electromagnetic Induction Heating Method |
title_full_unstemmed | Research on the Heating Process of CFRP Circular Tubes Based on Electromagnetic Induction Heating Method |
title_short | Research on the Heating Process of CFRP Circular Tubes Based on Electromagnetic Induction Heating Method |
title_sort | research on the heating process of cfrp circular tubes based on electromagnetic induction heating method |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384686/ https://www.ncbi.nlm.nih.gov/pubmed/37514428 http://dx.doi.org/10.3390/polym15143039 |
work_keys_str_mv | AT xujiazhong researchontheheatingprocessofcfrpcirculartubesbasedonelectromagneticinductionheatingmethod AT guyunfei researchontheheatingprocessofcfrpcirculartubesbasedonelectromagneticinductionheatingmethod AT futianyu researchontheheatingprocessofcfrpcirculartubesbasedonelectromagneticinductionheatingmethod AT zhangxiaobing researchontheheatingprocessofcfrpcirculartubesbasedonelectromagneticinductionheatingmethod AT zhanghao researchontheheatingprocessofcfrpcirculartubesbasedonelectromagneticinductionheatingmethod |