Cargando…
Modification of the 4-Hydroxyphenylacetate-3-hydroxylase Substrate Pocket to Increase Activity towards Resveratrol
4-Hydroxyphenylacetate-3-hydroxylase (4HPA3H; EC 1.14.14.9) is a heterodimeric flavin-dependent monooxygenase complex that catalyzes the ortho-hydroxylation of resveratrol to produce piceatannol. Piceatannol has various health benefits and valuable applications in food, medicine, and cosmetics. Enha...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384689/ https://www.ncbi.nlm.nih.gov/pubmed/37513473 http://dx.doi.org/10.3390/molecules28145602 |
_version_ | 1785081218878930944 |
---|---|
author | Zhang, Qianchao Jin, Yuning Yang, Kai Hu, Sheng Lv, Changjiang Huang, Jun Mei, Jiaqi Zhao, Weirui Mei, Lehe |
author_facet | Zhang, Qianchao Jin, Yuning Yang, Kai Hu, Sheng Lv, Changjiang Huang, Jun Mei, Jiaqi Zhao, Weirui Mei, Lehe |
author_sort | Zhang, Qianchao |
collection | PubMed |
description | 4-Hydroxyphenylacetate-3-hydroxylase (4HPA3H; EC 1.14.14.9) is a heterodimeric flavin-dependent monooxygenase complex that catalyzes the ortho-hydroxylation of resveratrol to produce piceatannol. Piceatannol has various health benefits and valuable applications in food, medicine, and cosmetics. Enhancing the catalytic activity of 4HPA3H toward resveratrol has the potential to benefit piceatannol production. In this study, the critical amino acid residues in the substrate pocket of 4HPA3H that affect its activity toward resveratrol were identified using semi-rational engineering. Two key amino acid sites (I157 and A211) were discovered and the simultaneous “best” mutant I157L/A211D enabled catalytic efficiency (Kcat/Km—resveratrol) to increase by a factor of 4.7-fold. Molecular dynamics simulations indicated that the increased flexibility of the 4HPA3H substrate pocket has the potential to improve the catalytic activity of the enzyme toward resveratrol. On this basis, we produced 3.78 mM piceatannol by using the mutant I157L/A211D whole cells. In this study, we successfully developed a highly active 4HPA3H variant for the hydroxylation of resveratrol to piceatannol. |
format | Online Article Text |
id | pubmed-10384689 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103846892023-07-30 Modification of the 4-Hydroxyphenylacetate-3-hydroxylase Substrate Pocket to Increase Activity towards Resveratrol Zhang, Qianchao Jin, Yuning Yang, Kai Hu, Sheng Lv, Changjiang Huang, Jun Mei, Jiaqi Zhao, Weirui Mei, Lehe Molecules Article 4-Hydroxyphenylacetate-3-hydroxylase (4HPA3H; EC 1.14.14.9) is a heterodimeric flavin-dependent monooxygenase complex that catalyzes the ortho-hydroxylation of resveratrol to produce piceatannol. Piceatannol has various health benefits and valuable applications in food, medicine, and cosmetics. Enhancing the catalytic activity of 4HPA3H toward resveratrol has the potential to benefit piceatannol production. In this study, the critical amino acid residues in the substrate pocket of 4HPA3H that affect its activity toward resveratrol were identified using semi-rational engineering. Two key amino acid sites (I157 and A211) were discovered and the simultaneous “best” mutant I157L/A211D enabled catalytic efficiency (Kcat/Km—resveratrol) to increase by a factor of 4.7-fold. Molecular dynamics simulations indicated that the increased flexibility of the 4HPA3H substrate pocket has the potential to improve the catalytic activity of the enzyme toward resveratrol. On this basis, we produced 3.78 mM piceatannol by using the mutant I157L/A211D whole cells. In this study, we successfully developed a highly active 4HPA3H variant for the hydroxylation of resveratrol to piceatannol. MDPI 2023-07-24 /pmc/articles/PMC10384689/ /pubmed/37513473 http://dx.doi.org/10.3390/molecules28145602 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Qianchao Jin, Yuning Yang, Kai Hu, Sheng Lv, Changjiang Huang, Jun Mei, Jiaqi Zhao, Weirui Mei, Lehe Modification of the 4-Hydroxyphenylacetate-3-hydroxylase Substrate Pocket to Increase Activity towards Resveratrol |
title | Modification of the 4-Hydroxyphenylacetate-3-hydroxylase Substrate Pocket to Increase Activity towards Resveratrol |
title_full | Modification of the 4-Hydroxyphenylacetate-3-hydroxylase Substrate Pocket to Increase Activity towards Resveratrol |
title_fullStr | Modification of the 4-Hydroxyphenylacetate-3-hydroxylase Substrate Pocket to Increase Activity towards Resveratrol |
title_full_unstemmed | Modification of the 4-Hydroxyphenylacetate-3-hydroxylase Substrate Pocket to Increase Activity towards Resveratrol |
title_short | Modification of the 4-Hydroxyphenylacetate-3-hydroxylase Substrate Pocket to Increase Activity towards Resveratrol |
title_sort | modification of the 4-hydroxyphenylacetate-3-hydroxylase substrate pocket to increase activity towards resveratrol |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384689/ https://www.ncbi.nlm.nih.gov/pubmed/37513473 http://dx.doi.org/10.3390/molecules28145602 |
work_keys_str_mv | AT zhangqianchao modificationofthe4hydroxyphenylacetate3hydroxylasesubstratepockettoincreaseactivitytowardsresveratrol AT jinyuning modificationofthe4hydroxyphenylacetate3hydroxylasesubstratepockettoincreaseactivitytowardsresveratrol AT yangkai modificationofthe4hydroxyphenylacetate3hydroxylasesubstratepockettoincreaseactivitytowardsresveratrol AT husheng modificationofthe4hydroxyphenylacetate3hydroxylasesubstratepockettoincreaseactivitytowardsresveratrol AT lvchangjiang modificationofthe4hydroxyphenylacetate3hydroxylasesubstratepockettoincreaseactivitytowardsresveratrol AT huangjun modificationofthe4hydroxyphenylacetate3hydroxylasesubstratepockettoincreaseactivitytowardsresveratrol AT meijiaqi modificationofthe4hydroxyphenylacetate3hydroxylasesubstratepockettoincreaseactivitytowardsresveratrol AT zhaoweirui modificationofthe4hydroxyphenylacetate3hydroxylasesubstratepockettoincreaseactivitytowardsresveratrol AT meilehe modificationofthe4hydroxyphenylacetate3hydroxylasesubstratepockettoincreaseactivitytowardsresveratrol |