Cargando…
Non-Destructive Imaging of Defects Using Non-Cooperative 5G Millimeter-Wave Signals
Recent developments in fifth-generation (5G) wireless communications networks are creating an increasingly crowded electromagnetic environment at microwave (3–30 GHz) and millimeter-wave (30–300 GHz) frequencies. Radiation at these bands can provide non-destructive testing of defects and shielded st...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384742/ https://www.ncbi.nlm.nih.gov/pubmed/37514715 http://dx.doi.org/10.3390/s23146421 |
Sumario: | Recent developments in fifth-generation (5G) wireless communications networks are creating an increasingly crowded electromagnetic environment at microwave (3–30 GHz) and millimeter-wave (30–300 GHz) frequencies. Radiation at these bands can provide non-destructive testing of defects and shielded structures using non-ionizing signals. In an actual building setting where 5G millimeter-wave communications signals are present, passive imaging of the radiation that is propagating through a wall defect can take place by means of interferometric processing without emitting additional signals in an already-crowded spectrum. We investigate the use of millimeter-wave interferometric imaging of defects in building walls and shielded structures by capturing the transmission of 5G millimeter-wave signals through the defects. We experimentally explore the ability to image defects by capturing the transmission of 38 GHz signals through materials using a 24-element interferometric receiving array. |
---|