Cargando…

The Vital Role Played by Deferiprone in the Transition of Thalassaemia from a Fatal to a Chronic Disease and Challenges in Its Repurposing for Use in Non-Iron-Loaded Diseases

The iron chelating orphan drug deferiprone (L1), discovered over 40 years ago, has been used daily by patients across the world at high doses (75–100 mg/kg) for more than 30 years with no serious toxicity. The level of safety and the simple, inexpensive synthesis are some of the many unique properti...

Descripción completa

Detalles Bibliográficos
Autor principal: Kontoghiorghes, George J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384919/
https://www.ncbi.nlm.nih.gov/pubmed/37513928
http://dx.doi.org/10.3390/ph16071016
_version_ 1785081275955019776
author Kontoghiorghes, George J.
author_facet Kontoghiorghes, George J.
author_sort Kontoghiorghes, George J.
collection PubMed
description The iron chelating orphan drug deferiprone (L1), discovered over 40 years ago, has been used daily by patients across the world at high doses (75–100 mg/kg) for more than 30 years with no serious toxicity. The level of safety and the simple, inexpensive synthesis are some of the many unique properties of L1, which played a major role in the contribution of the drug in the transition of thalassaemia from a fatal to a chronic disease. Other unique and valuable clinical properties of L1 in relation to pharmacology and metabolism include: oral effectiveness, which improved compliance compared to the prototype therapy with subcutaneous deferoxamine; highly effective iron removal from all iron-loaded organs, particularly the heart, which is the major target organ of iron toxicity and the cause of mortality in thalassaemic patients; an ability to achieve negative iron balance, completely remove all excess iron, and maintain normal iron stores in thalassaemic patients; rapid absorption from the stomach and rapid clearance from the body, allowing a greater frequency of repeated administration and overall increased efficacy of iron excretion, which is dependent on the dose used and also the concentration achieved at the site of drug action; and its ability to cross the blood–brain barrier and treat malignant, neurological, and microbial diseases affecting the brain. Some differential pharmacological activity by L1 among patients has been generally shown in relation to the absorption, distribution, metabolism, elimination, and toxicity (ADMET) of the drug. Unique properties exhibited by L1 in comparison to other drugs include specific protein interactions and antioxidant effects, such as iron removal from transferrin and lactoferrin; inhibition of iron and copper catalytic production of free radicals, ferroptosis, and cuproptosis; and inhibition of iron-containing proteins associated with different pathological conditions. The unique properties of L1 have attracted the interest of many investigators for drug repurposing and use in many pathological conditions, including cancer, neurodegenerative conditions, microbial conditions, renal conditions, free radical pathology, metal intoxication in relation to Fe, Cu, Al, Zn, Ga, In, U, and Pu, and other diseases. Similarly, the properties of L1 increase the prospects of its wider use in optimizing therapeutic efforts in many other fields of medicine, including synergies with other drugs.
format Online
Article
Text
id pubmed-10384919
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-103849192023-07-30 The Vital Role Played by Deferiprone in the Transition of Thalassaemia from a Fatal to a Chronic Disease and Challenges in Its Repurposing for Use in Non-Iron-Loaded Diseases Kontoghiorghes, George J. Pharmaceuticals (Basel) Review The iron chelating orphan drug deferiprone (L1), discovered over 40 years ago, has been used daily by patients across the world at high doses (75–100 mg/kg) for more than 30 years with no serious toxicity. The level of safety and the simple, inexpensive synthesis are some of the many unique properties of L1, which played a major role in the contribution of the drug in the transition of thalassaemia from a fatal to a chronic disease. Other unique and valuable clinical properties of L1 in relation to pharmacology and metabolism include: oral effectiveness, which improved compliance compared to the prototype therapy with subcutaneous deferoxamine; highly effective iron removal from all iron-loaded organs, particularly the heart, which is the major target organ of iron toxicity and the cause of mortality in thalassaemic patients; an ability to achieve negative iron balance, completely remove all excess iron, and maintain normal iron stores in thalassaemic patients; rapid absorption from the stomach and rapid clearance from the body, allowing a greater frequency of repeated administration and overall increased efficacy of iron excretion, which is dependent on the dose used and also the concentration achieved at the site of drug action; and its ability to cross the blood–brain barrier and treat malignant, neurological, and microbial diseases affecting the brain. Some differential pharmacological activity by L1 among patients has been generally shown in relation to the absorption, distribution, metabolism, elimination, and toxicity (ADMET) of the drug. Unique properties exhibited by L1 in comparison to other drugs include specific protein interactions and antioxidant effects, such as iron removal from transferrin and lactoferrin; inhibition of iron and copper catalytic production of free radicals, ferroptosis, and cuproptosis; and inhibition of iron-containing proteins associated with different pathological conditions. The unique properties of L1 have attracted the interest of many investigators for drug repurposing and use in many pathological conditions, including cancer, neurodegenerative conditions, microbial conditions, renal conditions, free radical pathology, metal intoxication in relation to Fe, Cu, Al, Zn, Ga, In, U, and Pu, and other diseases. Similarly, the properties of L1 increase the prospects of its wider use in optimizing therapeutic efforts in many other fields of medicine, including synergies with other drugs. MDPI 2023-07-18 /pmc/articles/PMC10384919/ /pubmed/37513928 http://dx.doi.org/10.3390/ph16071016 Text en © 2023 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Kontoghiorghes, George J.
The Vital Role Played by Deferiprone in the Transition of Thalassaemia from a Fatal to a Chronic Disease and Challenges in Its Repurposing for Use in Non-Iron-Loaded Diseases
title The Vital Role Played by Deferiprone in the Transition of Thalassaemia from a Fatal to a Chronic Disease and Challenges in Its Repurposing for Use in Non-Iron-Loaded Diseases
title_full The Vital Role Played by Deferiprone in the Transition of Thalassaemia from a Fatal to a Chronic Disease and Challenges in Its Repurposing for Use in Non-Iron-Loaded Diseases
title_fullStr The Vital Role Played by Deferiprone in the Transition of Thalassaemia from a Fatal to a Chronic Disease and Challenges in Its Repurposing for Use in Non-Iron-Loaded Diseases
title_full_unstemmed The Vital Role Played by Deferiprone in the Transition of Thalassaemia from a Fatal to a Chronic Disease and Challenges in Its Repurposing for Use in Non-Iron-Loaded Diseases
title_short The Vital Role Played by Deferiprone in the Transition of Thalassaemia from a Fatal to a Chronic Disease and Challenges in Its Repurposing for Use in Non-Iron-Loaded Diseases
title_sort vital role played by deferiprone in the transition of thalassaemia from a fatal to a chronic disease and challenges in its repurposing for use in non-iron-loaded diseases
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384919/
https://www.ncbi.nlm.nih.gov/pubmed/37513928
http://dx.doi.org/10.3390/ph16071016
work_keys_str_mv AT kontoghiorghesgeorgej thevitalroleplayedbydeferiproneinthetransitionofthalassaemiafromafataltoachronicdiseaseandchallengesinitsrepurposingforuseinnonironloadeddiseases
AT kontoghiorghesgeorgej vitalroleplayedbydeferiproneinthetransitionofthalassaemiafromafataltoachronicdiseaseandchallengesinitsrepurposingforuseinnonironloadeddiseases