Cargando…
Adversarial-Aware Deep Learning System Based on a Secondary Classical Machine Learning Verification Approach
Deep learning models have been used in creating various effective image classification applications. However, they are vulnerable to adversarial attacks that seek to misguide the models into predicting incorrect classes. Our study of major adversarial attack models shows that they all specifically t...
Autores principales: | Alkhowaiter, Mohammed, Kholidy, Hisham, Alyami, Mnassar A., Alghamdi, Abdulmajeed, Zou, Cliff |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384939/ https://www.ncbi.nlm.nih.gov/pubmed/37514582 http://dx.doi.org/10.3390/s23146287 |
Ejemplares similares
-
Adversarial machine learning
por: Vorobeychik, Yevgeniy, et al.
Publicado: (2018) -
Machine Learning Uncertainties with Adversarial Neural Networks
por: Galler, Peter
Publicado: (2019) -
Machine learning uncertainties with adversarial neural networks
por: Englert, Christoph, et al.
Publicado: (2019) -
Learning to learn from data: Using deep adversarial learning to construct optimal statistical procedures
por: Luedtke, Alex, et al.
Publicado: (2020) -
Robust adversarial uncertainty quantification for deep learning fine-tuning
por: Ahmed, Usman, et al.
Publicado: (2023)