Cargando…
Equimolar Polyampholyte Hydrogel Synthesis Strategies with Adaptable Properties
Polyampholyte hydrogels exhibit great antibacterial and antifouling properties, which make them attractive for biomedical applications, such as drug delivery, wound healing, and tissue engineering. They also have potential applications in food safety, wastewater treatment, and desalination. Since th...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385034/ https://www.ncbi.nlm.nih.gov/pubmed/37514520 http://dx.doi.org/10.3390/polym15143131 |
_version_ | 1785081304049516544 |
---|---|
author | Toleutay, Gaukhar Su, Esra Yelemessova, Gaukhargul |
author_facet | Toleutay, Gaukhar Su, Esra Yelemessova, Gaukhargul |
author_sort | Toleutay, Gaukhar |
collection | PubMed |
description | Polyampholyte hydrogels exhibit great antibacterial and antifouling properties, which make them attractive for biomedical applications, such as drug delivery, wound healing, and tissue engineering. They also have potential applications in food safety, wastewater treatment, and desalination. Since they are based on ionic interactions, polyampholytes are known to require lower amounts of chemical cross-linkers as compared with traditional gels. However, the effects of both chemical and physical interactions on the material’s performance are yet to be fully understood and were examined in the present work. Here, four series of equimolar polyampholyte hydrogels were synthesized with anionic (acrylamidomethylpropane sulfonic acid sodium salt) and cationic monomers (acrylamidopropyl-trimethylammonium chloride) along with a cross-linker (N,N′-methylenebisacrylamide). The mechanical and rheological properties of the gels were characterized following changes to the initial monomer concentration and crosslinker ratios, which led to gels with different toughness, stretchability, and compressibility. The direct correlation of the cross-linking degree with the initial monomer concentration showed that the chemical crosslinker could be further reduced at a high monomer concentration of 30% by weight, which creates an inter-chain network at a minimal crosslinker concentration of 0.25%. Lastly, N′N-dimethylacrylamide was added, which resulted in an increase in the number of H-bonds in the structure, noticeably raising material performance. |
format | Online Article Text |
id | pubmed-10385034 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103850342023-07-30 Equimolar Polyampholyte Hydrogel Synthesis Strategies with Adaptable Properties Toleutay, Gaukhar Su, Esra Yelemessova, Gaukhargul Polymers (Basel) Article Polyampholyte hydrogels exhibit great antibacterial and antifouling properties, which make them attractive for biomedical applications, such as drug delivery, wound healing, and tissue engineering. They also have potential applications in food safety, wastewater treatment, and desalination. Since they are based on ionic interactions, polyampholytes are known to require lower amounts of chemical cross-linkers as compared with traditional gels. However, the effects of both chemical and physical interactions on the material’s performance are yet to be fully understood and were examined in the present work. Here, four series of equimolar polyampholyte hydrogels were synthesized with anionic (acrylamidomethylpropane sulfonic acid sodium salt) and cationic monomers (acrylamidopropyl-trimethylammonium chloride) along with a cross-linker (N,N′-methylenebisacrylamide). The mechanical and rheological properties of the gels were characterized following changes to the initial monomer concentration and crosslinker ratios, which led to gels with different toughness, stretchability, and compressibility. The direct correlation of the cross-linking degree with the initial monomer concentration showed that the chemical crosslinker could be further reduced at a high monomer concentration of 30% by weight, which creates an inter-chain network at a minimal crosslinker concentration of 0.25%. Lastly, N′N-dimethylacrylamide was added, which resulted in an increase in the number of H-bonds in the structure, noticeably raising material performance. MDPI 2023-07-23 /pmc/articles/PMC10385034/ /pubmed/37514520 http://dx.doi.org/10.3390/polym15143131 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Toleutay, Gaukhar Su, Esra Yelemessova, Gaukhargul Equimolar Polyampholyte Hydrogel Synthesis Strategies with Adaptable Properties |
title | Equimolar Polyampholyte Hydrogel Synthesis Strategies with Adaptable Properties |
title_full | Equimolar Polyampholyte Hydrogel Synthesis Strategies with Adaptable Properties |
title_fullStr | Equimolar Polyampholyte Hydrogel Synthesis Strategies with Adaptable Properties |
title_full_unstemmed | Equimolar Polyampholyte Hydrogel Synthesis Strategies with Adaptable Properties |
title_short | Equimolar Polyampholyte Hydrogel Synthesis Strategies with Adaptable Properties |
title_sort | equimolar polyampholyte hydrogel synthesis strategies with adaptable properties |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385034/ https://www.ncbi.nlm.nih.gov/pubmed/37514520 http://dx.doi.org/10.3390/polym15143131 |
work_keys_str_mv | AT toleutaygaukhar equimolarpolyampholytehydrogelsynthesisstrategieswithadaptableproperties AT suesra equimolarpolyampholytehydrogelsynthesisstrategieswithadaptableproperties AT yelemessovagaukhargul equimolarpolyampholytehydrogelsynthesisstrategieswithadaptableproperties |