Cargando…
Effects of Different Freezing Rate and Frozen Storage Temperature on the Quality of Large-Mouth Bass (Micropterus salmoides)
In order to clarify the individual role of freezing and frozen storage on the quality of fish, fillets of large-mouth bass (Micropterus salmoides) were subjected to different freezing rates (freezing with −18 °C (A), −60 °C (B), and −60 °C with forced air circulation at 2 m/s (C), respectively) foll...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385098/ https://www.ncbi.nlm.nih.gov/pubmed/37513304 http://dx.doi.org/10.3390/molecules28145432 |
Sumario: | In order to clarify the individual role of freezing and frozen storage on the quality of fish, fillets of large-mouth bass (Micropterus salmoides) were subjected to different freezing rates (freezing with −18 °C (A), −60 °C (B), and −60 °C with forced air circulation at 2 m/s (C), respectively) followed by frozen storage at −18 °C for 30 and 90 days. Another two groups were frozen at −60 °C, followed by storage at −40 °C (D) and −60 °C (E), respectively. Results showed that water-holding and TVBN were mainly affected by storage time. No significant changes were found in free thiol content among treatments. A greater freezing rate and lower storage temperature generally led to lower TBARS. GC × GC-TOFMS revealed a total of 66 volatile compounds, which were related to lipid oxidation. PLS-DA showed that fresh samples were separated from the frozen–thawed ones, and fillets in groups D and E were relatively close to fresh fillets in the composition of oxidation-related volatiles. In conclusion, freezing rate and storage temperature had a significant impact on lipid oxidation and protein denaturation in the fillets of large-mouth bass, while protein oxidation was more affected by freezing rate. |
---|