Cargando…
Walking Trajectory Estimation Using Multi-Sensor Fusion and a Probabilistic Step Model
This paper presents a framework for accurately and efficiently estimating a walking human’s trajectory using a computationally inexpensive non-Gaussian recursive Bayesian estimator. The proposed framework fuses global and inertial measurements with predictions from a kinematically driven step model...
Autores principales: | Rabb, Ethan, Steckenrider, John Josiah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385110/ https://www.ncbi.nlm.nih.gov/pubmed/37514787 http://dx.doi.org/10.3390/s23146494 |
Ejemplares similares
-
Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device
por: He, Xiang, et al.
Publicado: (2015) -
Probabilistic walking models using built environment and sociodemographic predictors
por: Moudon, Anne Vernez, et al.
Publicado: (2019) -
Walking Distance Estimation Using Walking Canes with Inertial Sensors
por: Dang, Duc Cong, et al.
Publicado: (2018) -
A Framework for Trajectory Prediction of Preceding Target Vehicles in Urban Scenario Using Multi-Sensor Fusion
por: Zou, Bin, et al.
Publicado: (2022) -
Optimal Fusion Estimation with Multi-Step Random Delays and Losses in Transmission
por: Caballero-Águila, Raquel, et al.
Publicado: (2017)