Cargando…

3D Framework Carbon for High-Performance Zinc-Ion Capacitors

Given the rapid progress and widespread adoption of advanced energy storage devices, there has been a growing interest in aqueous capacitors that offer non-flammable properties and high safety standards. Consequently, extensive research efforts have been dedicated to investigating zinc anodes and lo...

Descripción completa

Detalles Bibliográficos
Autores principales: Kiatikajornjumroen, Setthathon, Liu, Xiaopeng, Lu, Yinan, Deka Boruah, Buddha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385202/
https://www.ncbi.nlm.nih.gov/pubmed/37512787
http://dx.doi.org/10.3390/mi14071476
Descripción
Sumario:Given the rapid progress and widespread adoption of advanced energy storage devices, there has been a growing interest in aqueous capacitors that offer non-flammable properties and high safety standards. Consequently, extensive research efforts have been dedicated to investigating zinc anodes and low-cost carbonaceous cathode materials. Despite these efforts, the development of high-performance zinc-ion capacitors (ZICs) still faces challenges, such as limited cycling stability and low energy densities. In this study, we present a novel approach to address these challenges. We introduce a three-dimensional (3D) conductive porous carbon framework cathode combined with zinc anode cells, which exhibit exceptional stability and durability in ZICs. Our experimental results reveal remarkable cycling performance, with a capacity retention of approximately 97.3% and a coulombic efficiency of nearly 100% even after 10,000 charge–discharge cycles. These findings represent significant progress in improving the performance of ZICs.