Cargando…
Implementation of Field-Programmable Gate Array Platform for Object Classification Tasks Using Spike-Based Backpropagated Deep Convolutional Spiking Neural Networks
This paper investigates the performance of deep convolutional spiking neural networks (DCSNNs) trained using spike-based backpropagation techniques. Specifically, the study examined temporal spike sequence learning via backpropagation (TSSL-BP) and surrogate gradient descent via backpropagation (SGD...
Autores principales: | Kakani, Vijay, Li, Xingyou, Cui, Xuenan, Kim, Heetak, Kim, Byung-Soo, Kim, Hakil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385231/ https://www.ncbi.nlm.nih.gov/pubmed/37512665 http://dx.doi.org/10.3390/mi14071353 |
Ejemplares similares
-
Exploring Optimized Spiking Neural Network Architectures for Classification Tasks on Embedded Platforms
por: Syed, Tehreem, et al.
Publicado: (2021) -
The adaptation of spike backpropagation delays in cortical neurons
por: Buskila, Yossi, et al.
Publicado: (2013) -
Vision-Based Tactile Sensor Mechanism for the Estimation of Contact Position and Force Distribution Using Deep Learning
por: Kakani, Vijay, et al.
Publicado: (2021) -
Training Deep Spiking Neural Networks Using Backpropagation
por: Lee, Jun Haeng, et al.
Publicado: (2016) -
Backpropagation With Sparsity Regularization for Spiking Neural Network Learning
por: Yan, Yulong, et al.
Publicado: (2022)