Cargando…
Multi-Temporal Hyperspectral Classification of Grassland Using Transformer Network
In recent years, grassland monitoring has shifted from traditional field surveys to remote-sensing-based methods, but the desired level of accuracy has not yet been obtained. Multi-temporal hyperspectral data contain valuable information about species and growth season differences, making it a promi...
Autores principales: | Zhao, Xuanhe, Zhang, Shengwei, Shi, Ruifeng, Yan, Weihong, Pan, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385388/ https://www.ncbi.nlm.nih.gov/pubmed/37514934 http://dx.doi.org/10.3390/s23146642 |
Ejemplares similares
-
Visible-NIR hyperspectral classification of grass based on multivariate smooth mapping and extreme active learning approach
por: Zhao, Xuanhe, et al.
Publicado: (2022) -
Hierarchical Multi-Scale Convolutional Neural Networks for Hyperspectral Image Classification
por: Li, Simin, et al.
Publicado: (2019) -
Learning a Transform Base for the Multi- to Hyperspectral Sensor Network with K-SVD
por: Hänel, Thomas, et al.
Publicado: (2021) -
Double-branch feature fusion transformer for hyperspectral image classification
por: Dang, Lanxue, et al.
Publicado: (2023) -
Hyperspectral Image Classification with Capsule Network Using Limited Training Samples
por: Deng, Fei, et al.
Publicado: (2018)