Cargando…
Optimizing Forecasted Activity Notifications with Reinforcement Learning
In this paper, we propose the notification optimization method by providing multiple alternative times as a reminder for a forecasted activity with and without probabilistic considerations for the activity that needs to be completed and needs notification. It is important to consider various factors...
Autores principales: | Fikry, Muhammad, Inoue, Sozo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385422/ https://www.ncbi.nlm.nih.gov/pubmed/37514804 http://dx.doi.org/10.3390/s23146510 |
Ejemplares similares
-
Correcting notification delay and forecasting of COVID-19 data
por: Sarnaglia, Alessandro J.Q., et al.
Publicado: (2022) -
On-Device Deep Learning Inference for Efficient Activity Data Collection
por: Mairittha, Nattaya, et al.
Publicado: (2019) -
Optimizing Adaptive Notifications in Mobile Health Interventions Systems: Reinforcement Learning from a Data-driven Behavioral Simulator
por: Wang, Shihan, et al.
Publicado: (2021) -
Exposure notification system activity as a leading indicator for SARS-COV-2 caseload forecasting
por: Aronoff-Spencer, Eliah, et al.
Publicado: (2023) -
On-Device Deep Personalization for Robust Activity Data Collection †
por: Mairittha, Nattaya, et al.
Publicado: (2020)