Cargando…
Synergistically Enhanced Photocatalytic Degradation by Coupling Slow-Photon Effect with Z-Scheme Charge Transfer in CdS QDs/IO-TiO(2) Heterojunction
Lower light absorption and faster carrier recombination are significant challenges in photocatalysis. This study introduces a novel approach to address these challenges by anchoring cadmium sulfide quantum dots (CdS QDs) on inverse opal (IO)-TiO(2), which increases light absorption and promotes carr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385498/ https://www.ncbi.nlm.nih.gov/pubmed/37513309 http://dx.doi.org/10.3390/molecules28145437 |
_version_ | 1785081422616199168 |
---|---|
author | Zhu, Li-Bang Bao, Ning Zhang, Qing Ding, Shou-Nian |
author_facet | Zhu, Li-Bang Bao, Ning Zhang, Qing Ding, Shou-Nian |
author_sort | Zhu, Li-Bang |
collection | PubMed |
description | Lower light absorption and faster carrier recombination are significant challenges in photocatalysis. This study introduces a novel approach to address these challenges by anchoring cadmium sulfide quantum dots (CdS QDs) on inverse opal (IO)-TiO(2), which increases light absorption and promotes carriers’ separation by coupling slow-photon effect with Z-scheme charge transfer. Specifically, the IO-TiO(2) was created by etching a polystyrene opal template, which resulted in a periodic structure that enhances light absorption by reflecting light in the stop band. The size of CdS quantum dots (QDs) was regulated to achieve appropriate alignment of energy bands between CdS QDs and IO-TiO(2), promoting carrier transfer through alterations in charge transfer modes and resulting in synergistic-amplified photocatalysis. Theoretical simulations and electrochemical investigations demonstrated the coexistence of slow-photon effects and Z-scheme transfer. The system’s photodegradation performance was tested using rhodamine B as a model. This novel hierarchical structure of the Z-scheme heterojunction exhibits degradability 7.82 and 4.34 times greater than pristine CdS QDs and IO-TiO(2), respectively. This study serves as a source of inspiration for enhancing the photocatalytic capabilities of IO-TiO(2) and broadening its scope of potential applications. |
format | Online Article Text |
id | pubmed-10385498 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103854982023-07-30 Synergistically Enhanced Photocatalytic Degradation by Coupling Slow-Photon Effect with Z-Scheme Charge Transfer in CdS QDs/IO-TiO(2) Heterojunction Zhu, Li-Bang Bao, Ning Zhang, Qing Ding, Shou-Nian Molecules Article Lower light absorption and faster carrier recombination are significant challenges in photocatalysis. This study introduces a novel approach to address these challenges by anchoring cadmium sulfide quantum dots (CdS QDs) on inverse opal (IO)-TiO(2), which increases light absorption and promotes carriers’ separation by coupling slow-photon effect with Z-scheme charge transfer. Specifically, the IO-TiO(2) was created by etching a polystyrene opal template, which resulted in a periodic structure that enhances light absorption by reflecting light in the stop band. The size of CdS quantum dots (QDs) was regulated to achieve appropriate alignment of energy bands between CdS QDs and IO-TiO(2), promoting carrier transfer through alterations in charge transfer modes and resulting in synergistic-amplified photocatalysis. Theoretical simulations and electrochemical investigations demonstrated the coexistence of slow-photon effects and Z-scheme transfer. The system’s photodegradation performance was tested using rhodamine B as a model. This novel hierarchical structure of the Z-scheme heterojunction exhibits degradability 7.82 and 4.34 times greater than pristine CdS QDs and IO-TiO(2), respectively. This study serves as a source of inspiration for enhancing the photocatalytic capabilities of IO-TiO(2) and broadening its scope of potential applications. MDPI 2023-07-16 /pmc/articles/PMC10385498/ /pubmed/37513309 http://dx.doi.org/10.3390/molecules28145437 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhu, Li-Bang Bao, Ning Zhang, Qing Ding, Shou-Nian Synergistically Enhanced Photocatalytic Degradation by Coupling Slow-Photon Effect with Z-Scheme Charge Transfer in CdS QDs/IO-TiO(2) Heterojunction |
title | Synergistically Enhanced Photocatalytic Degradation by Coupling Slow-Photon Effect with Z-Scheme Charge Transfer in CdS QDs/IO-TiO(2) Heterojunction |
title_full | Synergistically Enhanced Photocatalytic Degradation by Coupling Slow-Photon Effect with Z-Scheme Charge Transfer in CdS QDs/IO-TiO(2) Heterojunction |
title_fullStr | Synergistically Enhanced Photocatalytic Degradation by Coupling Slow-Photon Effect with Z-Scheme Charge Transfer in CdS QDs/IO-TiO(2) Heterojunction |
title_full_unstemmed | Synergistically Enhanced Photocatalytic Degradation by Coupling Slow-Photon Effect with Z-Scheme Charge Transfer in CdS QDs/IO-TiO(2) Heterojunction |
title_short | Synergistically Enhanced Photocatalytic Degradation by Coupling Slow-Photon Effect with Z-Scheme Charge Transfer in CdS QDs/IO-TiO(2) Heterojunction |
title_sort | synergistically enhanced photocatalytic degradation by coupling slow-photon effect with z-scheme charge transfer in cds qds/io-tio(2) heterojunction |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385498/ https://www.ncbi.nlm.nih.gov/pubmed/37513309 http://dx.doi.org/10.3390/molecules28145437 |
work_keys_str_mv | AT zhulibang synergisticallyenhancedphotocatalyticdegradationbycouplingslowphotoneffectwithzschemechargetransferincdsqdsiotio2heterojunction AT baoning synergisticallyenhancedphotocatalyticdegradationbycouplingslowphotoneffectwithzschemechargetransferincdsqdsiotio2heterojunction AT zhangqing synergisticallyenhancedphotocatalyticdegradationbycouplingslowphotoneffectwithzschemechargetransferincdsqdsiotio2heterojunction AT dingshounian synergisticallyenhancedphotocatalyticdegradationbycouplingslowphotoneffectwithzschemechargetransferincdsqdsiotio2heterojunction |