Cargando…
ESAMask: Real-Time Instance Segmentation Fused with Efficient Sparse Attention
Instance segmentation is a challenging task in computer vision, as it requires distinguishing objects and predicting dense areas. Currently, segmentation models based on complex designs and large parameters have achieved remarkable accuracy. However, from a practical standpoint, achieving a balance...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385500/ https://www.ncbi.nlm.nih.gov/pubmed/37514740 http://dx.doi.org/10.3390/s23146446 |
_version_ | 1785081423103787008 |
---|---|
author | Zhang, Qian Chen, Lu Shao, Mingwen Liang, Hong Ren, Jie |
author_facet | Zhang, Qian Chen, Lu Shao, Mingwen Liang, Hong Ren, Jie |
author_sort | Zhang, Qian |
collection | PubMed |
description | Instance segmentation is a challenging task in computer vision, as it requires distinguishing objects and predicting dense areas. Currently, segmentation models based on complex designs and large parameters have achieved remarkable accuracy. However, from a practical standpoint, achieving a balance between accuracy and speed is even more desirable. To address this need, this paper presents ESAMask, a real-time segmentation model fused with efficient sparse attention, which adheres to the principles of lightweight design and efficiency. In this work, we propose several key contributions. Firstly, we introduce a dynamic and sparse Related Semantic Perceived Attention mechanism (RSPA) for adaptive perception of different semantic information of various targets during feature extraction. RSPA uses the adjacency matrix to search for regions with high semantic correlation of the same target, which reduces computational cost. Additionally, we design the GSInvSAM structure to reduce redundant calculations of spliced features while enhancing interaction between channels when merging feature layers of different scales. Lastly, we introduce the Mixed Receptive Field Context Perception Module (MRFCPM) in the prototype branch to enable targets of different scales to capture the feature representation of the corresponding area during mask generation. MRFCPM fuses information from three branches of global content awareness, large kernel region awareness, and convolutional channel attention to explicitly model features at different scales. Through extensive experimental evaluation, ESAMask achieves a mask AP of 45.4 at a frame rate of 45.2 FPS on the COCO dataset, surpassing current instance segmentation methods in terms of the accuracy–speed trade-off, as demonstrated by our comprehensive experimental results. In addition, the high-quality segmentation results of our proposed method for objects of various classes and scales can be intuitively observed from the visualized segmentation outputs. |
format | Online Article Text |
id | pubmed-10385500 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103855002023-07-30 ESAMask: Real-Time Instance Segmentation Fused with Efficient Sparse Attention Zhang, Qian Chen, Lu Shao, Mingwen Liang, Hong Ren, Jie Sensors (Basel) Article Instance segmentation is a challenging task in computer vision, as it requires distinguishing objects and predicting dense areas. Currently, segmentation models based on complex designs and large parameters have achieved remarkable accuracy. However, from a practical standpoint, achieving a balance between accuracy and speed is even more desirable. To address this need, this paper presents ESAMask, a real-time segmentation model fused with efficient sparse attention, which adheres to the principles of lightweight design and efficiency. In this work, we propose several key contributions. Firstly, we introduce a dynamic and sparse Related Semantic Perceived Attention mechanism (RSPA) for adaptive perception of different semantic information of various targets during feature extraction. RSPA uses the adjacency matrix to search for regions with high semantic correlation of the same target, which reduces computational cost. Additionally, we design the GSInvSAM structure to reduce redundant calculations of spliced features while enhancing interaction between channels when merging feature layers of different scales. Lastly, we introduce the Mixed Receptive Field Context Perception Module (MRFCPM) in the prototype branch to enable targets of different scales to capture the feature representation of the corresponding area during mask generation. MRFCPM fuses information from three branches of global content awareness, large kernel region awareness, and convolutional channel attention to explicitly model features at different scales. Through extensive experimental evaluation, ESAMask achieves a mask AP of 45.4 at a frame rate of 45.2 FPS on the COCO dataset, surpassing current instance segmentation methods in terms of the accuracy–speed trade-off, as demonstrated by our comprehensive experimental results. In addition, the high-quality segmentation results of our proposed method for objects of various classes and scales can be intuitively observed from the visualized segmentation outputs. MDPI 2023-07-16 /pmc/articles/PMC10385500/ /pubmed/37514740 http://dx.doi.org/10.3390/s23146446 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Qian Chen, Lu Shao, Mingwen Liang, Hong Ren, Jie ESAMask: Real-Time Instance Segmentation Fused with Efficient Sparse Attention |
title | ESAMask: Real-Time Instance Segmentation Fused with Efficient Sparse Attention |
title_full | ESAMask: Real-Time Instance Segmentation Fused with Efficient Sparse Attention |
title_fullStr | ESAMask: Real-Time Instance Segmentation Fused with Efficient Sparse Attention |
title_full_unstemmed | ESAMask: Real-Time Instance Segmentation Fused with Efficient Sparse Attention |
title_short | ESAMask: Real-Time Instance Segmentation Fused with Efficient Sparse Attention |
title_sort | esamask: real-time instance segmentation fused with efficient sparse attention |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385500/ https://www.ncbi.nlm.nih.gov/pubmed/37514740 http://dx.doi.org/10.3390/s23146446 |
work_keys_str_mv | AT zhangqian esamaskrealtimeinstancesegmentationfusedwithefficientsparseattention AT chenlu esamaskrealtimeinstancesegmentationfusedwithefficientsparseattention AT shaomingwen esamaskrealtimeinstancesegmentationfusedwithefficientsparseattention AT lianghong esamaskrealtimeinstancesegmentationfusedwithefficientsparseattention AT renjie esamaskrealtimeinstancesegmentationfusedwithefficientsparseattention |