Cargando…
ESAMask: Real-Time Instance Segmentation Fused with Efficient Sparse Attention
Instance segmentation is a challenging task in computer vision, as it requires distinguishing objects and predicting dense areas. Currently, segmentation models based on complex designs and large parameters have achieved remarkable accuracy. However, from a practical standpoint, achieving a balance...
Autores principales: | Zhang, Qian, Chen, Lu, Shao, Mingwen, Liang, Hong, Ren, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385500/ https://www.ncbi.nlm.nih.gov/pubmed/37514740 http://dx.doi.org/10.3390/s23146446 |
Ejemplares similares
-
Fusing attention mechanism with Mask R-CNN for instance segmentation of grape cluster in the field
por: Shen, Lei, et al.
Publicado: (2022) -
A Pipeline Defect Instance Segmentation System Based on SparseInst
por: Wang, Niannian, et al.
Publicado: (2023) -
Real-Time Instance Segmentation of Traffic Videos for Embedded Devices
por: Panero Martinez, Ruben, et al.
Publicado: (2021) -
Attention-Guided Instance Segmentation for Group-Raised Pigs
por: Hu, Zhiwei, et al.
Publicado: (2023) -
Multiple instance neural networks based on sparse attention for cancer detection using T-cell receptor sequences
por: Kim, Younghoon, et al.
Publicado: (2022)