Cargando…
Prediction of Antigenic Distance in Influenza A Using Attribute Network Embedding
Owing to the rapid changes in the antigenicity of influenza viruses, it is difficult for humans to obtain lasting immunity through antiviral therapy. Hence, tracking the dynamic changes in the antigenicity of influenza viruses can provide a basis for vaccines and drug treatments to cope with the spr...
Autores principales: | Peng, Fujun, Xia, Yuanling, Li, Weihua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385503/ https://www.ncbi.nlm.nih.gov/pubmed/37515165 http://dx.doi.org/10.3390/v15071478 |
Ejemplares similares
-
Anchor Link Prediction across Attributed Networks via Network Embedding
por: Wang, Shaokai, et al.
Publicado: (2019) -
Effective attributed network embedding with information behavior extraction
por: Hu, Ganglin, et al.
Publicado: (2022) -
DDNE: Discriminative Distance Metric Learning for Network Embedding
por: Li, Xiaoxue, et al.
Publicado: (2020) -
Convolutional Neural Network Based Approach to In Silico Non-Anticipating Prediction of Antigenic Distance for Influenza Virus
por: Forghani, Majid, et al.
Publicado: (2020) -
Protein complexes identification based on go attributed network embedding
por: Xu, Bo, et al.
Publicado: (2018)