Cargando…
Human Activity Prediction Based on Forecasted IMU Activity Signals by Sequence-to-Sequence Deep Neural Networks
Human Activity Recognition (HAR) has gained significant attention due to its broad range of applications, such as healthcare, industrial work safety, activity assistance, and driver monitoring. Most prior HAR systems are based on recorded sensor data (i.e., past information) recognizing human activi...
Autores principales: | Jaramillo, Ismael Espinoza, Chola, Channabasava, Jeong, Jin-Gyun, Oh, Ji-Heon, Jung, Hwanseok, Lee, Jin-Hyuk, Lee, Won Hee, Kim, Tae-Seong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385571/ https://www.ncbi.nlm.nih.gov/pubmed/37514789 http://dx.doi.org/10.3390/s23146491 |
Ejemplares similares
-
Real-Time Human Activity Recognition with IMU and Encoder Sensors in Wearable Exoskeleton Robot via Deep Learning Networks
por: Jaramillo, Ismael Espinoza, et al.
Publicado: (2022) -
Explainable sequence-to-sequence GRU neural network for pollution forecasting
por: Mirzavand Borujeni, Sara, et al.
Publicado: (2023) -
2D Convolutional Neural Markov Models for Spatiotemporal Sequence Forecasting
por: Halim, Calvin Janitra, et al.
Publicado: (2020) -
Performance Analysis of Deep Learning Algorithms in Diagnosis of Malaria Disease
por: Hemachandran, K., et al.
Publicado: (2023) -
Complex Deep Neural Networks from Large Scale Virtual IMU Data for Effective Human Activity Recognition Using Wearables
por: Kwon, Hyeokhyen, et al.
Publicado: (2021)