Cargando…
Photocatalytic Evaluation and Application as a Sensor for the Toxic Atmospheres (Propane and Carbon Monoxide) of Nickel Antimonate (NiSb(2)O(6)) Powders
Nickel antimonate (NiSb(2)O(6)) powders were synthesized using a wet chemistry process assisted by microwave radiation and calcination from 600 to 700 °C to evaluate their photocatalytic and gas-sensing properties. The crystalline phase obtained at 800 °C of trirutile-type nickel antimonate was conf...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385575/ https://www.ncbi.nlm.nih.gov/pubmed/37512298 http://dx.doi.org/10.3390/ma16145024 |
_version_ | 1785081441704476672 |
---|---|
author | Morales-Bautista, Jacob Guillén-Bonilla, Héctor Guillén-Bonilla, Alex Rodríguez-Betancourtt, Verónica-María Ramírez-Ortega, Jorge Alberto Guillén-Bonilla, José Trinidad |
author_facet | Morales-Bautista, Jacob Guillén-Bonilla, Héctor Guillén-Bonilla, Alex Rodríguez-Betancourtt, Verónica-María Ramírez-Ortega, Jorge Alberto Guillén-Bonilla, José Trinidad |
author_sort | Morales-Bautista, Jacob |
collection | PubMed |
description | Nickel antimonate (NiSb(2)O(6)) powders were synthesized using a wet chemistry process assisted by microwave radiation and calcination from 600 to 700 °C to evaluate their photocatalytic and gas-sensing properties. The crystalline phase obtained at 800 °C of trirutile-type nickel antimonate was confirmed with powder X-ray diffraction. The morphology and size of the nanostructures were analyzed employing electron microscopy (SEM and TEM), identifying irregular particles and microrods (~277 nm, made up of polyhedral shapes of size ~65 nm), nanorods with an average length of ~77 nm, and nanostructures of polyhedral type of different sizes. UV-vis analysis determined that the bandgap of the powders obtained at 800 °C was ~3.2 eV. The gas sensing tests obtained a maximum response of ~5 for CO (300 ppm) at 300 °C and ~10 for C(3)H(8) (500 ppm) at 300 °C. According to these results, we consider that NiSb(2)O(6) can be applied as a gas sensor. On the other hand, the photocatalytic properties of the antimonate were examined by monitoring the discoloration of malachite green (MG) at five ppm. MG concentration monitoring was carried out using UV-visible spectroscopy, and 85% discoloration was achieved after 200 min of photocatalytic reaction. |
format | Online Article Text |
id | pubmed-10385575 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103855752023-07-30 Photocatalytic Evaluation and Application as a Sensor for the Toxic Atmospheres (Propane and Carbon Monoxide) of Nickel Antimonate (NiSb(2)O(6)) Powders Morales-Bautista, Jacob Guillén-Bonilla, Héctor Guillén-Bonilla, Alex Rodríguez-Betancourtt, Verónica-María Ramírez-Ortega, Jorge Alberto Guillén-Bonilla, José Trinidad Materials (Basel) Article Nickel antimonate (NiSb(2)O(6)) powders were synthesized using a wet chemistry process assisted by microwave radiation and calcination from 600 to 700 °C to evaluate their photocatalytic and gas-sensing properties. The crystalline phase obtained at 800 °C of trirutile-type nickel antimonate was confirmed with powder X-ray diffraction. The morphology and size of the nanostructures were analyzed employing electron microscopy (SEM and TEM), identifying irregular particles and microrods (~277 nm, made up of polyhedral shapes of size ~65 nm), nanorods with an average length of ~77 nm, and nanostructures of polyhedral type of different sizes. UV-vis analysis determined that the bandgap of the powders obtained at 800 °C was ~3.2 eV. The gas sensing tests obtained a maximum response of ~5 for CO (300 ppm) at 300 °C and ~10 for C(3)H(8) (500 ppm) at 300 °C. According to these results, we consider that NiSb(2)O(6) can be applied as a gas sensor. On the other hand, the photocatalytic properties of the antimonate were examined by monitoring the discoloration of malachite green (MG) at five ppm. MG concentration monitoring was carried out using UV-visible spectroscopy, and 85% discoloration was achieved after 200 min of photocatalytic reaction. MDPI 2023-07-16 /pmc/articles/PMC10385575/ /pubmed/37512298 http://dx.doi.org/10.3390/ma16145024 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Morales-Bautista, Jacob Guillén-Bonilla, Héctor Guillén-Bonilla, Alex Rodríguez-Betancourtt, Verónica-María Ramírez-Ortega, Jorge Alberto Guillén-Bonilla, José Trinidad Photocatalytic Evaluation and Application as a Sensor for the Toxic Atmospheres (Propane and Carbon Monoxide) of Nickel Antimonate (NiSb(2)O(6)) Powders |
title | Photocatalytic Evaluation and Application as a Sensor for the Toxic Atmospheres (Propane and Carbon Monoxide) of Nickel Antimonate (NiSb(2)O(6)) Powders |
title_full | Photocatalytic Evaluation and Application as a Sensor for the Toxic Atmospheres (Propane and Carbon Monoxide) of Nickel Antimonate (NiSb(2)O(6)) Powders |
title_fullStr | Photocatalytic Evaluation and Application as a Sensor for the Toxic Atmospheres (Propane and Carbon Monoxide) of Nickel Antimonate (NiSb(2)O(6)) Powders |
title_full_unstemmed | Photocatalytic Evaluation and Application as a Sensor for the Toxic Atmospheres (Propane and Carbon Monoxide) of Nickel Antimonate (NiSb(2)O(6)) Powders |
title_short | Photocatalytic Evaluation and Application as a Sensor for the Toxic Atmospheres (Propane and Carbon Monoxide) of Nickel Antimonate (NiSb(2)O(6)) Powders |
title_sort | photocatalytic evaluation and application as a sensor for the toxic atmospheres (propane and carbon monoxide) of nickel antimonate (nisb(2)o(6)) powders |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385575/ https://www.ncbi.nlm.nih.gov/pubmed/37512298 http://dx.doi.org/10.3390/ma16145024 |
work_keys_str_mv | AT moralesbautistajacob photocatalyticevaluationandapplicationasasensorforthetoxicatmospherespropaneandcarbonmonoxideofnickelantimonatenisb2o6powders AT guillenbonillahector photocatalyticevaluationandapplicationasasensorforthetoxicatmospherespropaneandcarbonmonoxideofnickelantimonatenisb2o6powders AT guillenbonillaalex photocatalyticevaluationandapplicationasasensorforthetoxicatmospherespropaneandcarbonmonoxideofnickelantimonatenisb2o6powders AT rodriguezbetancourttveronicamaria photocatalyticevaluationandapplicationasasensorforthetoxicatmospherespropaneandcarbonmonoxideofnickelantimonatenisb2o6powders AT ramirezortegajorgealberto photocatalyticevaluationandapplicationasasensorforthetoxicatmospherespropaneandcarbonmonoxideofnickelantimonatenisb2o6powders AT guillenbonillajosetrinidad photocatalyticevaluationandapplicationasasensorforthetoxicatmospherespropaneandcarbonmonoxideofnickelantimonatenisb2o6powders |